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A METHOD FOR ANALYZING THE AEROELASTIC
-STABILITY OF A HELICOPTER ROTOR IN

" FORWARD FLIGHT

By Peter Crimi
ROCHESTER APPLIED SCIENCE ASSOCIATES, INC.

SUMMARY

A method has been developed which provides the exact solution
to the perturbation equations of motion of a rotor in forward
flight. Effects of compressibility, stall and reversed flow are
taken into account, and there is no restriction on the number of
degrees of freedom which can be analyzed.

The equations of motion of a rotor blade in forward flight
were derived in terms of the normal modes of free vibration of the
blade. BAerodynamic forces were expressed on the basis. of quasi-
steady flow, using strip theory. Perturbation equations were gen-
erated by expanding all aerodynamic forces in the perturbation
variables about their steady-state values. The equations are of
the form of a coupled set of linear, second-order differential
equations with periodically varying coefficients.

A method was then developed for analyzing the stability of
linear dynamic systems with periodically varying parameters.
Stability is determined by calculation of all the characteristic
values of the system. Thus, a solution provides rates of growth
or decay of the motion following a disturbance, in addition to a
determination of whether or not the system is stable.

A digital computer program was prepared to implement the gen-
eral method for the case of a rotor blade with one, two or three
degrees of freedom. Stability calculations were performed for
comparison with results obtained by direct time integration of the
nonlinear equations of motion of a rigid blade with flapping and
lead-lag hinges. Limited calculations were also made of the aero-
elastic stability of a model rotor blade for which experimental
flutter data was available. Comparisons of the results indicate
gualitative agreement in both cases.



INTRODUCTION

The aeroelastic stability of helicopter rotors is of concern
for two reasons. First, at the high advance ratios associated
with compound and stowable-rotor operation, the hostile aerodynamic
environment could lead to dangerous instabilities. Secondly, in
conventional operation, instabilities can occur which, while gen-
erally not of a catastrophic nature because of nonlinear effects,
are nonetheless serious from a fatigue and control standpoint.

The analysis of rotor flutter for hovering flight is a rela-
tively straightforward problem, the formulations being essentially
the same as those for classical flutter of conventional aircraft.
Considerable research, both theoretical and experimental, has dealt
with the flutter of hovering rotors (see, for example, References 1
through 4). Agreement between theory and experiment has generally
been good.

The problem for a rotor in forward flight is fundamentally
different from that of the hovering case, due to the nature of the
equations of motion. Because the relative flow imposed on a given
blade section varies periodically as the blade rotates, the effec-
tive dynamic pressure, and hence the constant of proportionality of
the aerodynamic forces, also varies periodically. As a consequence,
the equations of motion of the rotor have periodically varying co-
efficients. Systems described by equationsof this type, even though
linear, display many unusual properties and in some respects resem-—
ble nonlinear systems (see Reference 5).

Linear differential equations with periodically varying coeffi-~
cients have been the concern of applied mathematicians for over a
century. The differential equation of second order bearing his
name was discussed by Mathieu in 1868 in reference to the problem
of a vibrating elliptic membrane. The more general second-order
equation derived by Hill for determining the motion of the lunar
perigee was presented by him in 1877. 1In 1883, Floquet determined
the form of the solution for any linear differential equation with
periodic coefficients.*

More recent analyses related to dynamic systems with periodic
parameters are presented in References 7, 8 and 9. In Reference

7, the general NEE order problem is treated, while Reference 8 is
concerned with spin-stabilized satellites and Reference 9 deals

*A discussion of the early history of Mathieu and related
functions is given in Reference 5. Many papers of historical
interest are also noted in Reference 6.



with mechanical instabilities of helicopter rotors. These analyses
and similar ones treating related problems generally either rely on
expansion in a small parameter to obtain a solution or are re-
stricted to special forms of the differential equations.

Since a general method for analyzing linear systems with peri-
odic parameters has not been available, it has been necessary in the
past, in investigating rotor flutter, to rely primarily on direct
integration of the equations of motion using an analog or digital
computer. The results of analog studies of rotor stability are re-
ported in References 10 and 11. Digital computers were used to
obtain results discussed in References 12 and 13. Computer solu-
tions are useful particularly in that nonlinear effects can readily
be incorporated to give an accurate indication of system dynamics
for a specific rotor .and flight conditions. However, the results
are often difficult to interpret and evaluate in terms of system
stability, and, especially when a digital computer is used, their
cost precludes conducting a thorough parametric study.

It has been possible to gain some insight into rotor aero-
elastic characteristics by treating a single degree of freedom
analytically (References 14 and 15). A single second-order differ-
ential equation represents the system. This equation can be reduced
to the form of Hill's equation (Reference 6), for which there are
techniques available to obtain solutions. The analyses have been
confined to the flapping degree of freedom; it was found that this
simple system is quite stable, but that flutter can occur at very
high advance ratios (of the order of unity).

The study reported here was directed to obtaining the exact
analytical solutions of the perturbation equations of motion of a
rotor in forward flight. The values of system parameters or flight
conditions were not restricted, nor were limitations placed on the
number or types of degrees of freedom. Because the general problem
was attacked, the solution obtained has application in areas other
than rotor aeroelastic stability. The method presented can be used
to determine the stability of any linear dynamic system with peri-
odically varying parameters. Also, the computer program developed
to implement the method has been segmented in such a way that it
can be applied to the stability analysis of any linear dynamic
system with three degrees of freedom.

SYMBOLS
a_, b dimensionless, periodic coefficients in the basic
mn mn . . ;
set of differential equations
Sy dmn dimensionless, periodic coefficients in the

derived set of differential equations



blade chord, m

blade section lift coefficient
blade section drag coefficient

blade section moment coefficient for moment about
mid-chord, positive to increase incidence

drag per unit span of blade, N/m

aerodynamic force component per unit blade span
in the y-direction, N/m

aerodynamic force component per unit blade span
in the z-direction, N/m

coefficients in the finite sum of trigonometric
functions related to A

mass moment of inertia about the elastic axis
per unit span; kg-m

lift per unit span of blade, N/m

horizontal distance forward of the Xjaxis of the
elastic axis (x-axis), m

aerodynamic moment per unit span about mid-chord,
positive to increase incidence, N

aerodynamic moment per unit span about the elastic
axis, positive to increase incidence, N

blade mass per unit span, kg/m

number of degrees of freedom of the elasto-
mechanical system

rotor radius, m

magnitude of resultant fluid velocity relative
to a blade section, m/s

component of fluid velocity, relative to a blade
section, normal to the Xy-Zy plane, m/s

component of fluid velocity, relative to a blade
section, tangent to the Xp-Z¢ plane, m/s



w

W.
1

(X0,Y0,29)

x,vy,2)

AL
rj

magnitude of free-stream velocity (aircraft
forward speed), m/s

displacement of blade section in the y-direction,m
displacement of blade section in the z-direction,m
wake—induced inflow, m/s

coordinates rotating with the blade, the Yg axis
coincident with the shaft

coordinates fixed with respect to a local blade
section, the x-axis coinciding with the elastic
axis and the z-axis parallel to the chord

distance of the elastic axis ahead of mid-chord,m

blade section angle of attack, rad

shaft tilt with respect to normal to free stream,
positive for aft tilt of the negative Yp-axis, rad

infinite determinant

distance forward of the elastic axis of blade
section mass center, m

displacement of the n—t-:--l’l coupled mode of free
vibration of the elasto-mechanical system

flapwise bending slope
real part of system characteristic value iw

imaginary part of system characteristic value iw
roots defining points at which A is singular

mass density of free stream, kg/m3

angle between local blade chord and the Xg-Yyp
plane, rad

torsional deflection about the elastic axis, posi-
tive to increase incidence, rad

chordwise bending slope

rotor rotational speed, rad/s



iw characteristic value of the basic or derived
systems, iw = At ixI

natural frequency of the kE}l coupled mode of
free vibration of the rotating system, rad/s

€14
=

DEVELOPMENT OF THE EQUATIONS OF MOTION
OF A ROTOR IN FORWARD FLIGHT

The perturbation equations of motion for a rotor blade in
forward flight are derived in this section. The set of coupled,
linear differential equations with periodic coefficients which are
obtained form the subject for analysis in the next section.

The elasto-mechanical segment of the aeroelastic system,
assumed tc have N degrees of freedom, is conveniently represented
in texrms of the N normal modes of free vibration. Normal modes
and frequencies for a rotating beam can be obtained either from a
continuous representation (Reference 16) or from a lumped-mass
model (Reference 17).

2Aerodynamic forces are derived here in accordance with the
usual strip-theory assumptions. Quasi-steady flow is assumed as
well. A perturbation analysis is then performed, with expansion
of experimentally or otherwise determined aerodynamic coefficients
in a Taylor series,about the nominal flow conditions, in the guan-
tities defining the perturbations in the blade motions.

Consider a rotor blade, then, with angular speed 2 subjected
to a uniform free stream of magnitude Vf and densityp, as shown in

Figure 1. The X;-axis is taken coincident with the pitch, or

feathering, axis, when the blade is in its undeformed position, as
shown in the figure. The coordinates (x,y,2z) also rotate with the
blade and are fixed with respect to a local blade section of the
undeformed blade, with origin at the elastic axis and with the
z-axis parallel to the chordline. The horizontal offset of the
elastic axis with respect to the Xp~axis is denoted ZZ. The angle

which a section of the undeformed blade makes with the Xy-Zgplane,

combining built-in twist and pitch control settings, is denoted ¢.

Blade motions are defined by the five variables v, w, ¢, 6 and
. The deflections of the elastic axis in the y and z directions
are v and w, respectively, the torsional deflection is ¢, while 6
and y are bending slopes:




Figure 1.

Coordinate systems for a rotor in

forward flight.



These five variables are expressed in terms of the N coupled modes
of free vibration selected to represent the rotating mechanical
system. Specifically, these variables are expressible in the form:

N
(n)
v(x,t) = ) A (x)z_(t)
ney vV n
N
wix,t) = ) Aén)(X)Cn(t)
n=ji

YT (n
¢ (x,t) =n__2_1A¢ (x) ¢ () b
Y ()
o(x,t) = ) A" (x)g (¢)
n=1
T o (n)
Y(x,t) = XAw (x)z (t)

n=j}

(n) (n)
- (x) ’ AW

obtained on excitation of the nEE coupled mode.

where A (x), etc., denote the values of v, w, etc.,

If Lagrange's equations are applied to the system, with the
functions ¢y, Z2, ..., Ly as generalized coordinates, the system

equations of motion are given by

Ek + a]% Ck = Fk(t) ’ k = 1121---1N? (2)

where Jk is the natural frequency of the kEE mode and Fk is the

generalized force applied to that mode. It is assumed that the
mode shapes have been normalized so as to yield a generalized
mass of unity.



The géneralized forces are expressed by

R
F (0 = l M o x,0 + a® o (x,t)

0

(k)
12

(k)

+A¢

(X)Qw(X,t)}dx
(3)

(X)Q¢ (x,t) + A

where R is rotor radius. Omitting the steady-state forcing temms,
which are not of concern to a stability analysis, the force and

moment distributions Qv’ Qw, etc. are given by

. 7
Qv(x,t) = - 2mQe sin oy + Fv(x,t)
Qw(x,t) = - 2mQe cos ¢y + Fw(x,t)
L (4)
Q¢(x,t) = 2I,0 sin oy + M¢(x,t)
Qw(x,t) = - 2I4Q¢ + 2mQe [V sin ¢ + w cos ¢l

where F, and Fw are aerodynamic forces in the y and z directions,
respectively, M¢ is the aerodynamic moment about the elastic axis,

e is the distance of the section mass center forward of the elastic
axis, m is blade mass per unit span and I, is mass moment of inertia
about the elastic axis per unit span. The terms containing ¢ and ¢
represent gyroscopic coupling terms. They are placed on the right-
hand side because their inclusion in the vibration analysis to
obtain mode shapes and frequencies would disrupt the orthogonality
of the modes. No quantity Qe, similar to the quantity Q¢' appears

in Egs. (3) or (4) because the mass moment of inertia of a blade
section about its chordline has been assumed to be negligible.

The next step is to obtain expressions for the aerodynamic
forces and to perform the appropriate linearizations. To accom-
plish this define, first, an effective section incidence a,

-1
a = ¢ + ¢ + tan [V_



where Vo and vV, are components of fluid velocity relative to the

blade, at midchord, normal and tangential to the rotor'plane!
respectively. If oy denotes shaft angle (positive for aft tilt of

the @Q-vector), Za is distance of the elastic axis forward of mid-

chord and Qt is the blade azimuth relative to the downstream direc-—
tion, then these velocity components are given by

v, = [v + Z_ ¢ - Q(Za - Lz)(e cos ® + ¢y sin &)] cos ¢

- w sin ¢ + Ve cos a  COS Qt(e cos ¢ + ¢ sin o)

+ Vf sSin o, = Wi (5)
V., = 9x + V. cos ag sin @t + w cos ¢

+ [v + Za$ - 2(z, - £,)(6 cos ¢ + y sin ¢)] sin ¢

/

where wi is the wake-induced inflow, assumed constant over the

rotor plane. The factor Q(8 cos ¢ + ¢ sin ¢) appears in Egs. (5)
because the angular velocity directed along the Y, (shaft) axis,
of magnitude @, has a component which is tangent to the blade
when the blade is inclined to the Xy - Z; plane, due to bending,
the angle of inclination being 6 cos ¢ + ¢ sin ¢.

The aerodynamic lift £, acting normal to the relative fluid
velocity, and containing a term to account for the apparent camber
due to rotation of the section about the x-axis, the drag d acting

parallel to the relative wvelocity, and the moment Mc/z acting about

mid-chord, are given by

1 .
L = ipVZCCK(a) + %pVC2[¢ - Q(6 cos ¢ + y sin @) ]
d = 3v2ce. (a)
2° a‘e f (6)
M = lv2cee (o)
c/2 2 m
where

2 - y2 2
Ve = Vn + Vt .

10



The blade chord is C and Cpr C4q and C, are experimentally deter-

mined two-dimensional force coefficients. The apparent-camber
term arises due to the linear variation of guasi-steady downwash
along the blade chord when the blade section is rotated about mid-
chord. The aerodynamic forces appearing in Egs. (4) are related
to those in Egs. (6) by the following expressions:

FV = - f cos a — d sin o

F, = £ sin a - d cos o } (7)
= - 7 L

M¢ MC/z ’

The next step is to perform a consistent linearization of
Egs. (7) by expanding the various functions appearing in those
equations in Taylor series and discarding second-order quantities
in v, w, ¢, ® or y. The expansion is made about the nominal inci-
dence ag and nominal relative speed V;, where

0.0=¢+El
 ean”! Vf sin ag - w, .
£ = Qx + V. cos o_ sin Qt d
£ s
Vo = [(V. sin o - w.)2 + (9x + V. cos o_ sin Qt)z]l/2 ;
0 f s i f s

as obtained when all dependent variables vanish in the expressions
for V and a. Specifically, the expansions of o and V yield

Q
il

ag + Ao + ...

ag ¥ ¢ + ;% [ex + Vg cos ag sin Qt]l{[v + Za$
- Q(Za - Kz)(e cos ¢ + P sin d)lcos &

- w sin ¢ + Vf cos a_ COS Qt(® cos & + ¢ sin &)}

11



l . 3 * . -
- ;; [Vf sin o wi]{w cos & + [v + Z, ¢
0

- Q(Za - KZ)(e cos ¢ + ¢ sin ¢)] sin o} + ...

V=Vy + AV + ...

1

= VO + v; [Vf sln as - Wi]{[V + Za¢
- Q(Za - KZ)(e cos & + P sin ¢)]cos o
- w sin ¢ + Vf cos a_ COS Qt(6e cos ¢ + ¢ sin @)}
1 ) . . .
— +
+ vy [Qx + Ve cos o sin Qtl{w cos ¢ + [v Z_ ¢

- Q(Za - KZ)(G cos & + 3 sin ¢)]lsin &} + ...

Each term in Egs. (7) is then expanded, using these expressions
for a and V. For example, the first term in FV is expanded by

writing £ cos o as follows:

£ cos o = {%pvzccz(a) + %pVCz[i - 2(8 cos ¢ + ¢ sin %)} }cos a
1 o dCyp
= {ip[vo + ZVOAV + ...]C[Cz(ao) + aa— a=a0Aa + .-o]

+ Ep[VO + AV + ...]1C2[¢ -~ (6 cos ¢ + ¥ sin @)]} [cos ap

- sin aglha + ...]

Thus, on discarding higher-order terms and the steady state term

%pV%CCK(aO)COSaO, which is not of concern in a stability analysis,

£ cos o is given by

12



dc
£ .
£ cos a = ipc[—HE 0L___mocos ap - Cz(ao)s1n aO]{V%¢

+ [ox + Vg cos a sin etl{[v + Z.% - Q(Za - Lz)(e cos ¢

+ ¢ sin 9)]cos ¢

- w sin ¢ + Vg cos a cos Qt(e cos ¢ + ¢ sin ¢}
- [Vf sin ag - wi]{w cos ¢ + [v + Z, ¢ - Q(Za - KZ)(G cos ¢
+ ¢ sin ¢)]lsin ¢}}

+ pCC, (ag)cos ao{[Vf sin ag - wi]{[{z + zaqz- Q(z_ - £,) (8 cos o

+ y sin ¢)]cos ¢

~ w sin o + Ve cos o cos Qt(6 cos @ + y sin @)}
+ [ax + Vf cos a_ sin Qt]{w cos ¢ + [v + Z, ¢ - Q(Za - ZZ)@ cos o

+  sin ¢)lsin ¢}}

+ %pVOCZ cos ao[$ - (6 cos & + ¥ sin )]

It can be seen at this point that, by systematically and con-
sistently expanding all terms in the manner outlined above, the
effects of compressibility, stall and reversed flow have been
retained in the formulation. The coefficients Cpr Cq and Ch and

their derivatives with respect to incidence, all evaluated at the
nominal incidence ag(x,t), appear in the formulations as peri-
odically varying factors in the expressions for the coefficients
in the equations of motion. Thus, provided the correct and
complete variations of those coefficients with nominal incidence
and nominal Mach number are retained, the effects of compressi-
bility, stall and reversed flow on the linear stability of the
system are properly taken into account.

Once Egs. (7) have been expanded as outlined above, those re-

lations are substituted in Egs. (4), which are in turn substituted
in Egs. (2). With the blade motions expressed in terms of the

13



generalized coordinates, through Egs.

(1), the perturbation equa-~

tions of motion are obtained. Specifically, those equations are:

N

=0
(8)

k=1,2,...,8

I + 02Ty - nzltGkn(t);n + Hy (£ g ]
where R
_ (k)
Gkn(t) = J {Av (x)uvn(x,t

0

R

kn
0

(k)
+ A¢ (X)A¢n(x,t)

by (X08) = § V2 Ca Aén)

D

)+ 2l @, 5,0

(k)
+ A¢ (x)u¢n(x,t)} ax

k) (k)
() = J {Aé (X)Avn(x,t) + AL (x)Awn(x,t)

(k)
+ A¢ (x)an(x,t) ax

8 (n) . (n)
+ 5 Vg C [cos ¢A " + sin @Aw ]{GD[Vf cos § cos o, cos Qt
~ Q(Za - ZZ) cos agl + ZUL[Q(Za - £Z) sin op

- Vf sin £ cos ¢y cos Qt] +

i n) _ 1z 2
Ayp (Xrt) = = 2mee sin ¢A, 70VoC

+ % VOC{[GD cos g = 207 sin ao][ZaA¢

- [OD sin ag

ZCa cos apl

Nl

CcCOS dgAén)

(n) + A(n)]
v

(n)
+ 20, coOs aplA, }




in

which

dc
- s
- &:g(do) " da

dCL -
=g sin ag - Cd(ao) * Ta | a=aq cos ap

D
o, = 2[§£(a0) cos og + Cd(ao) sin GE]
b (x,t) =& V2 Cy aln)
wn'"’ 2 ¢ L ¢
[} (n) (n) s
+ 5 Vo C[%B cos ¢ + Alp sin ®|{vy, Vf cos o €OS
- Q(Za - £Z)cos a;] + YD{%f cos ag Sin £ cos Qt
. T N
- Q(Za EZ) sin a;] - 5 Casin ao}
A (x,t) = - 2mQe cos ¢ A(n) + T ,veC% sin o A(n)
wn 57 b 2 PVeO 0 )
. n n
+ % VOC{[TL cos ag + vp sin u{](ZaAé ) + Aé ))
+ - sin ag + cCoSs o A(n)
YL 0 Yp 015
in which
dCd dc
g, = Cz(ao) il o a=ag cos ag + Cd(d.o) + - a=ag sin ag
Yp = 2{§£(a0) sin oy - Cd(ao) cos a%]

15

£ cosQt




_ P 2 14 (n)
ud)n(x,t) =5 VO CcC s A¢
+ % Vg C {Vf cos o  cos Qt|:61 cos § + 268 sin E—I
- Q(Za - ﬂz) §1 cos ag + 26 sin a{l
T (n) (n) _.
+ 7 9] CZa }E&e cos ¢ + AlP sin {I
A (x,£) = 2T, sin o A _ 2o v,C2Z aln)
on "’ 0 ¥ 4P YO0+ %a%y

+ % VoC {’»61 cos oy + 28 sin aQH'ZaA;n) + A‘(,n):]

+ [:— 6! sin ag + 26 cos ao:lAv(vn)}

in which
§ =C Cm(ao) - Z Cﬂ(ao)
1o c ac, ., dc,
do |a=ag a da |[o=ag
- (n) (n) _. (n)
Awn(x,t) = 2I4,QA + Zer[AV sin ¢ + Aw cos ¢

16



DEVELOPMENT OF THE BASIC METHOD

The specific problem at hand here is to establish the means
for determining the stability of a set of linear equations with
periodic coefficients, such as those representing a helicopter
rotor in forward flight, Egs. (8). Those equations are put in a
somewhat more convenient form by defining an independent variable 2z,

and changing the notation of the coefficients, according to

a -2y |

mn Q “mn

b = %32 ~ G L =1,2 N

mm—-ﬁg-wm m m,n = rLyeee N
_ 4

bon © 7 %7 Gon m#n

The equations to be analyzed then become

2
d Cm

+
dz? n

|l ~12

dcn
. amn dz + bmn Cn =0 (9)

where an and bm are periodic functions:

n

amn(z + 1) = amn(z)
bmn(z + 7)) = bmn(z).

As was noted in the introduction, equations of the form of
Egs. (9) have received considerable attention over the past cen-
tury. Although attempts at general solutions have met with little
success, the form of the solution in the general case has been

17



developed. The theory of Floguet (see Reference 6) yields that
_ _iwz
z,(2) = e"""¢ (2)

where ¢n(z) is periodic, with a period m, and iw is a complex con-

stant. Since the differential system (Egs. (9))is of order 2N,
there are 2N values of iw defining the solution for a given case.
If any one of these characteristic values has a positive real part,
the system is unstable.

In order to secure the theoretical basis for the solution and
to avoid numerical difficulties, it is necessary to first operate on
Egs. (9) to obtain two related sets of equations. It is convenient
for this purpose to use matrix notation. A column m-~+rix X and
square matrices A and B can be defined as

(Cl r6111 a1z . @yp (b1 b1y «.. blN
2 azi b1

Lle sz -+« by

LCN LaNl aNZ T aNN

J

so that Egs. (9) can be written

dzx dx _
2 + A gy +BX =0 (10)

where the derivative of a matrix is the matrix formed by replacing
each element by its derivative.

The first step in obtaining the two related sets of equations
is to differentiate Eq. (10), yielding

=0 . (11)

3 2
d’X ,oa 32X, [?é +B| ¥y [95] X
dz 3 dz?2 dz dz dz

18



If Eq. (10) is solved for d2X/dz? and the result substituted
in Eq. (11), it is found that

Zz§+cg-xz+nx=o (12)
where
C=%+B—A2
D=-§%-AB .

If, now, Eg. (12) is differentiated and the second derivative
of X eliminated as before, it is found that

Sl-L+—X+Ed—X+FX=0 (13)
dz* dz
where
E=§—§+D—CA
P = %2 - CB .

It can be shown that a set of functions is a solution of the
original equation (Eq. (10)), if and only if it is a solution to
both of the derived equations, Eg. (12) and Eg. (13). As a result,
the solutions of Eq. (10) can be found by solving Egs. (12) and (13)
and identifying those solutions common to the latter two equations.
The proof is straightforward, and is given in Appendix A.

Consider, first, the solution to Eq. (12). It is convenient
at this point to abandon the matrix notation. Thus, if Cmn and
dmn denote the elements of matrices C and D, respectively, Eq. (12)

gives that

N
2 Vle =2+4a_cz|=0, (14)
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From the theory of Floquet, the solution of Egs. (14) must be
of the form

eimz¢m(z)

cm(Z)

v i(2k+w)z
- ) y Py © ( w)

m=1,2,...,N;

upon expansion of ¢, in a complex Fourier series. Also, the peri-

odic coefficients in Egs. (14) can be expanded in Fourier series:

_ ot 2ikz
Can T k=2 Emnk
- m,n=1,2,...,N.
_ 2ikz
Gon = k_Ewnmnk €

If the Fourier representations for the solution and for the
coefficients are substituted in Egs. (14) and the coefficients of

eZlkz are grouped and set equal to zero, a set of linear recursion
relations in the unknown coefficients Pk is obtained. Specifi-

cally, it is found that

0 = [i(2n + w)]3prn

N o
+ Z { Z [}rsk + i(2n - 2k + w)grs%}ps,n—k} (15)

s=1 k=—w

n=.,..,-2,-1,0,1,2,...;

r=1,2,...,N
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These relations constitute an infinite set of linear algebraic
equations in the unknown Fourier coefficients Ppi+ For this set

of equations to have a nontrivial solution, the associated infinite
determinant A(w) must vanish (a discussion of infinite determinants
is given in Reference 6). The requirement that A vanish is the con-
dition which determines w, and hence the stability of the system.

In order that A be meaningfully defined, it is necessary to
divide each of Egs. (15) through by the coefficient of Pyn® With

the unknowns then appropriately ordered, the diagonal elements of
A are all unity and the off-diagonal elements all vanish in the
limit as a row or column index of the determinant tends to either

positive or negative infinity. Specifically, the elements Ty of
A{w)(u, v =0, =1, £2,...) are given by
°Nn+r, Nk+s 0Lrs(n’k;w)
n,k = ...,-2,-1,,0,1,2,...;
r,S = l,2,.o.’N’
where ,
[i(2k + w)] snk 6rs + 1i(2k + w) grs,n—k + nrs,n—k

ars(n,k;w)

[1(2n + w)]13 + i(2n + w)grro * Ner,
in which
6ij =0, 1 #7373 ;
=1, i=73.

Note that the diagonal elements % are all unity. The con-

struction of the determinant carn perhaps be best visualized as
made up of a collection of subarrays which are NxN in size. The
location of any element within a subarray is determined from
indices r and s. The location of each subarray is specified
through indices n and k. The general arrangement of the a's in
A is illustrated in Figure 2 for the case N=2.

The value of A is obtained, for a given w, by evaluating the
finite determinant formed by ranging n and k from, say, -L to L.
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A{w)

1 ulz(—l,—l; 011 (=1,0) o1 (=1,0) ap3(-1,1) 012 {(-1,1)
oy {-1,~1) 1 s (-1,0) 020 (~1,0) 0pq(-1,1) a2 (=1,1)
ay1(0,-1) 012(0,~1) 1 a1 (0,0) ay1(0,1) ay12(0,1)
@23(0,-1) 022 (0,-1) 021(0,0) 1 021(0,1) 022 (0,1)
0311(1,-1) a12(1l,-1) ay11(1,0) a12(1,0) 1 @12 (1,1)
apy(1,-1) a2 (1,~-1) az1(1,0) ag2(1,0) az1(1,1) 1

Figure 2. The arrangement of the determinant
elements for the case N = 2




Successively larger values for L are then taken until the limit be-
comes apparent (see Reference 6).

The eXpression

Aw) =0 (16)

by itself is not a particularly useful relation for determining

w, because of the limiting process involved in evaluating infinite
determinants. It will be shown, however, that A(w) in fact con-
stitutes a combined series-product expansion in w of a finite sum
of trigonometric functions. With A(w) expressed in the latter
form, Eg. (16) can be solved explicitly for w.

It should be noted here that Hill obtained such a relation
for the second-order differential equation which bears his name
(see Reference 6). The development which follows is a generaliza-—
tion of that result.

Two properties of the function A(w) must first be established.
Specifically, it is asserted that

1. A(w) is an analytic function of w, except for simple,
identifiable poles;

2. A(w) is periodic in w with a period of 2.

That A(w) is analytic can be concluded by noting that A is an
absolutely convergent determinant~-~i.e., the product of the diag-
onal elements converges absolutely (in this case to unity) and the
double sum of the off~diagonal elements converges absolutely.
Uniform convergence and analyticity can then be established (see
Reference 6).

Note that if the original equations (Egs. (9)), rather than
derived equations (Egs. (14)),had been used to generate A, that
detexminant would not have been absolutely convergent since the
double sum of off-diagonal elements generated from the original
equations is only conditionally convergent. What follows hinges
an the analyticity of A, hence the necessity for working with the
differentiated sets of equations.

Clearly, too, the only singuiarities in A are simple poles at
the points

w = - 2n -~ ilrj ; n=20,%21,%22,...;
r = 1,2'c.vN;
i =1,2,3;
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where the A's are the 3N roots of the N cubic equations

3 = =
A EAEL k=0, r=1,2,... N

The periodicity of A is shown by substituting w + 2 for w in

the expression for O g whereupon it is found that

ars(n,k;w + 2) = °‘rs(n + 1,k + 1;w)

Thus, in the limit, the value of A is unchanged if w is replaced
by w + 2:

Ao + 2) = Aw) .
Now, consider the function D(w), defined by

N 3
—_ E R
D(w) = A(w) + rzl jzl £y cot[5(w + l*rj)] (17)

where the frj's are constants. Observe that D(w) is an analytic

function and that

D(w + 2) = D{(w).

Further, note that the term

Fid .
frj cot[z(w + lkrj)]

has simple poles at w = - 2n - ikrj for n = 0,:1,:2, ..., and has
no other singularities. Thus, if the value for each constant frj
is properly chosen, D(w) will have no poles. Let the frj's be so

chosen, making D(w) analytic throughout the finite part of the w-
plane. But D is clearly bounded at infinity; A{(w) has a limit of
one and the cotangents have limits of #*i for Im(w)~>*«», Therefore,
by Liouville's theorem, D(w) is simply some constant, say c:
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N 3
Alw) + ) ) £

r=1 j=; T

cot[%(w + ixr

J1

i (18)

It only remains to determine the values of the frj's and of

c.
with infinite w:

lim D(w) = ¢c =1
Im(w)> + =
lim D(w) = c =1
Im(w)> - o
Clearly, then, c=1 and
N 3
r=1 j=1 rJ

Replacing ¢ by unity and solving for A

N 3
p(w) =1 -} ) £,
r=1 j=1 ]

This is facilitated by first considering the limits of D(w)

o
- i .
r=1 j=1 rj
N 3
+ lrz-l jg::l frj -
0 .
in Eg. (18) gives that

cot[%(w + ixrj)] .

Now, let 3N - 1 arbitrary (but finite) wvalues of w, say wi,

W2 oo oy 17 be assigned in the above

equation. The resulting

3N - 1 equations, together with the one obtained for infinite u,

provide sufficient relations to solve for the frj's.

fically, those constants are

N 3
£f_ .
rzl jzl £J

)]

rj

cot[%(wk + i

~
~1
]
u
Il
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With the frj‘s known, the determinantal equation, A(w) = 0,

can be replaced by

N 3
m . _
1 - Z Z frj cotls (w + nrj)] =0 . (20)
r=1 j=1

A polynomial of degree 3N in el™ can be readily derived from

Eqg. (20). The 3N roots of that polynomial determine the charac-
teristic values for Egs. (12).

In the same manner as is outlined above for Egs. (12), the
4N characteristic values for Egs. (13) can be obtained. The 2N
values common to the two sets are those of the original eguations,

Egs. (9).
OUTLINE OF BASIC COMPUTER PROGRAM

In order to implement the method derived for analyzing sta-
bility of dynamic systems with periodic parameters, a basic digital
computer program was prepared for the analysis of systems with
three degrees of freedom. The program accepts the pertinent data
for a given system in the form of Fourier coefficients of the
periodic coefficients in the equations of motion (Egs. (9), with
N=3) , and then proceeds to calculate the six characteristic
values of the system by the method derived in the previous section.
For specific applications, a small subroutine can be prepared, if
necessary, to generate the Fourier coefficients used as input by
the basic computer program.

The overall flow of information guided by the formulations
of the basic program are outlined below. The numbers in the out-
line correspond to those in the blocks on the flow diagram of
Figure 3. The outline includes reference to the pertinent equa-
tions of the previous section. The relations guiding the more
routine procedures, such as extraction of the roots of polynomials
and solving of linear algebraic equations, have been omitted, but
are embodied in the computer program, a listing of which is given
in Appendix B.

1. PFourier Expansion of Coefficients
Given the coefficients of the equations of motion for a linear
dynamic system with three degrees of freedom and periodically

varying parameters with normal modes used as generalized co-
ordinates, such as Egs. (9), the coefficients are expanded
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Figure 3. Procedure for calculating characteristic values of a

dynamic system with three degrees of freedom and
periodically varying parameters
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in Fourier series. The specific output is a set of Fourier
coefficients for the periodic coefficients an and bmn appear-

ing in 'Egs. (9) with N=3; m,n=1,2,3. This subroutine is
associated with the particular dynamic system being analyzed.
and can be described as preparing the input to the main
stability—analysis program.

2. Matrix Multiplication and Fourier Expansion of
Coefficients

Given the Fourier coefficients of the elements of the 3x3
matrices A and B appearing in Eq. (10), the Fourier coeffici-
ents of the elements of matrices C and D, appearing in Eqg.
(12) ,and of E and F, appearing in Eg. (13), are calculated.
In this way, the coefficients of the higher-order, or differ-
entiated, systems of equations are related to the original
system of equations, Egs. (9).

3. Polynomial Factorization

The three cubic polynomials associated with the determinant
for the ninth-order system are factored to obtain the nine
singularities of that determinant (subroutine 3a). The three
guartic polynomials associated with the twelfth-order system
are factored to obtain the twelve singularities of that deter-
minant (subroutine 3b). The points Wy at which the infinite

determinants are to be evaluated are also selected, by speci-
fying each of them to be a set distance § from one of the
singular points of the determinant. The accuracy of the solu-
tion was found to be quite sensitive to the value of §, it
generally being necessary to make § as small as possible,
without sacrificing numerical accuracy elsewhere in the pro-
gram, in order to get satisfactory results. The reason for
this behavior is not known, but is presumably connected in
some way to the accuracy with which the infinite determinants
are calculated, this being the most difficult, and hence
least accurate, of the tasks performed by the program. A

value for § of 10_'l+ was used for most of the calculations
reported here.

4. Determinant Element and Determinant Evaluation

For each value of Wy s the determinant elements are computed

and the_infinite determinant is evaluated. It was ici

that this step would be the most time-consuming Oneagzlgﬁgated
program, and so considerable care was taken to employ the

most economical means for determinant evaluation. A process
of triangularization was selected for evaluating finjite
determinants.
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The limiting value of a determinant, for a given W r as the

number of elements increases without bound, is estimated as
follows. Three determinant values, for three successively
larger numbers of rows and columns, are first obtained. The
determinant is then assumed to vary inversely as some unknown
power of the number of rows and columns. The assumed form
has three unknown constants, so the three determinant wvalues,
corresponding to three different determinant sizes, provide

sufficient information to calculate the constants and hence
an estimate of the limit as the number of elements becomes
infinite. It has been found that three determinants, re-
spectively 33x33, 39x39 and 45x45 in size, generally are
sufficient to provide three-place accuracy in the result.

5. Set-up and Solution of the Linear Algebraic Equations

For the ninth-order system, the eight values of Wy and the
eight values of A(wk) are used to compute the coefficients

and inhomogeneous terms of Egs. (19). The nine equations
are then solved for the nine constants frj' A similar pro-

cedure is followed to obtain the twelve constants for the
twelfth~-order system. The egquations are solved by triangu-
larization.

6. Determination of the Characteristic Polynomials of the
Higher-Order Systems

For the ninth-order system, the coefficients of the poly-
nomial of the ninth degree in a*™ are derived from the deter-
minantal equation, Eqg. (20) (subroutine 6a). Similarly the
coefficients of the characteristic polynomial of the twelfth-
order system are obtained from the appropriate determinantal
equation (subroutine 6b).

7. Evaluation of the Common Polynomial Factor

At this point, one could presumably compute the nine roots of
the ninth-degree polynomial, the twelve roots of the twelfth-
degree polynomial and identify the roots common to the two

polynomials as being the characteristic values of the original

system. However, this procedure requires evaluation of fifteen

extraneous roots, followed by possible difficulties in identi-
fying which roots are indeed common ones.

It was found, though, that the coefficients of the character-

istic equation for the original system, which is actually a
polynomial factor common to the two higher-degree polynomials,
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can be obtained in terms of the coefficients of these higher-
degree polynomials. The steps taken to derive the necessary
expressions are outlined in Appendix C. Subroutine 7 imple-
ments those expressions, yielding the coefficients of the
sixth-degree polynomial characterizing the original system.

8. Polynomial Factorization

A standard library subroutine is used to obtain the six roots
of the characteristic polynomial. The logarithm of each root
is then evaluated (recall that the polynomial is formed of

powers of elﬂw) to obtain the six characteristic values, and
hence the stability, of the system.

During the check-out of the computer program, it was found
necessary to extract the roots of the higher-degree poly-
nomials. Since little additional running time is consumed

by those calculations, determination of the roots and charac-
teristic values for the ninth and twelfth~order systems has
been retained in the program for purposes of comparison.
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APPLICATION OF THE METHOD

The computer program implementing the general method was first
checked out by means of a test case, the characteristic values of
which could be derived in advance. The program was used next to
analyze a rotor system with two degrees of freedom for which solu-
tions by direct time integration had been obtained previously.
Lastly, calculations were conducted for a model rotor system having
three degrees of freedom, for which flutter boundaries had been
obtained experimentally. These applications are discussed in detail
below.

Test Case Calculations

It was found necessary in the course of the check-out of the
computer program to have available a test case for which the char-
acteristic values of the original sixth-order system as well as of
the derived ninth-order system were known in advance. Such a case
was generated by appropriately transforming Mathieu's equation.
The sixth-order system was then made up from three of these egua-
tions, treated as a coupled system, the program not being able to
distinguish whether the equations are coupled or not.

'The deriyation of the test case was carried out as follows.
Consider Mathieu's equation, which is generally written in the
form

d2u
dz?

+ (a - 2gq cos 2z)u = 0 . (21)

where a and q are specified constants. The characteristic values
+y of Mathieu's equation are a function of a and g (see Reference
5).

Now, let a new dependent variable y be defined by

- %f(z)
y = ue

where f(z) is periodic with a period =, but otherwise may be re-
garded as arbitrary. If u is substituted in Eq. (21) in terms of
y and f the following differential equation for y is obtained:
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2
Y a4 By =0 (22)

dz? dz
where
= 1
A = 3 £(z)
B=a—2qc0522+i_f2+lg’£
36 6 dz

Suppose, now, f is given by

£f(z) =
n

(A_ cos 2nz + B_ sin 2nz).
o B n

Ife~18

It then follows that the characteristic values of y, as a solution
of Egq. (22), must be y - Ag/6 and - y - Ay/6. Thus, we have derived

a second-order differential equation with periodic coefficients, of
a quite general form, for which the characteristic values are known.

Further, suppose a third-order equation is derived by the
method described previously which eliminates the second derivative,
namely

3
Y 4 c ¥y py =0 (23)
dz3 dz
where
c=B+3 _p
dz
D =S98 _ ap .
dz

It is possible, through further transformation and utilization of
the relations given on p. 134 of Reference 5, to show that the
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additional characteristic value of Eq. (23) is the negative of the
sum of the other two values, i.e., Agy/3.

The three equations of the test case were all derived from the
Mathieu's equation having a = 1, g = 0.32. For those values of a
and q, it follows that p = .15813 + i (see p. 105 of Reference 5).
Only the first three terms of the series for f(z) were retained
for each equation of the test case. The values of A;, A; and A,

chosen and the associated characteristic values for the three de-
grees of freedom are as follows:

A, Ay

A Ay A, T - u - = Ay/3
- 4.5 2.0 0.6 0.90813 + i 0.59187 - i | - 1.5
- 0.6 2.0 |- 0.6 0.25813 + i | - 0.05813 - i | - 0.2
3.0 |- 2.0 0.6 |- 0.34187 + i | - 0.65813 - i 1.0

The Fourier coefficients of the functions A and B appearing
in Eq. (22) were calculated for the three degrees of freedom and
were supplied as inputs to the computer program. The character-
istic values which were calculated for the ninth and twelfth order
systems are tabulated below, together with the independently

derived exact (anticipated) values. The quantities Ag and Ay

given are related to w by
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CHARACTERISTIC VALUES OF THE 9TH ORDER SYSTEM

Calculated I “Anticipated
*r Ay *r oo

0.90813 0.90813 .0
0.59185 0.59187 -
0.25814 0.25813 .
0.05816 - 0.05813 - 1.0
0.34184 -~ 0.34187 .0
0.65813 - 0.65813 - 1.
1.50000 - 1.50000 0.
0.19998 Jﬂ - 0.20000 .
1.00000 1.00000 0.0

CHARACTERISTIC VALUES OF THE

12TH ORDER SYSTEM

Calculated ﬂ Anticipated
AR >\:l: ) 4713u47 iI_<~

0.90803 0.90813 1.0
0.59187 0.59187 - 1.0
0.25802 0.25813 1.0
0.05960 - 0.05813 - 1.0
0.34188 - 0.34187 1.0
0.65813 - 0.65813 - 1.0
0.97699 - -
0.02369 - -
0.10970 l - -
0.41425 - -
0.21431 - -
1.38935 - -
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As can be seen from the tabulated results, the characteristic
values common to the ninth and twelfth order systems are those of
the sixth-order system. Note, too, that the program for the most
part predicts the characteristic values for this case to four
significant figures.

The characteristic values were also calculated from the sixth-
degree polynomial which was derived from the two higher-degree
polynomials. The resulting roots were unacceptably different from
the correct values, apparently because the polynomial as so derived
is sensitive to slight inaccuracies in the coefficients of the
higher-degree polynomials for this case. Thus, it may be necessary
to rely on direct comparison of ninth-order and twelfth-order solu-
tions to determine the correct sixth-order solutions in some in-
stances.

Comparison With Direct Time Integration

The analysis of stability by direct time integration on a digi-
tal computer of a rigid rotor blade with flapping and lead-lag
hinges is reported in Reference 12. The nonlinear representations
of both inertial and aerodynamic forces are utilized in the equa-
tions of motion. The basic blade for which numerical results were
obtained had zero offset of the flapping hinge and 0.05R offset of
the lead-lag hinge. The blade had a constant chord except for a
cut-out from the axis of rotation to 0.2 R. In the calculations
reported in Reference 12, the rotor was unloaded and at zero shaft
angle. Further details can be found in Reference 12.

For two of the cases analyzed in Reference 12, the variations
of flapping and lead-lag angles with time are presented. These
cases had values of advance ratio y of 0.6 and 1.4, respectively.
The mass constant y' for both cases was 1.6 (y' = oCR”/Ih, where

I, is the mass moment of inertia about the lead-lag hinge). The

case for the lower advance ratio is reported to be very stable and
the case with y = 1.4 is indicated to be stable but near a boundary
of neutral stability. The time histories of the blade displacements,
from Reference 12, are reproduced in Figures 4 and 5.

The appropriate parameter values for these two cases were in-
serted in the linearized equations of motion of a rotor blade
developed previously in this report. Series representations of the
coefficients in the equations, including the first eleven harmonics
of rotor rotational speed, were generated and supplied to the main

stability~analysis program. The characteristic values calculated
are as follows:

35



CHARACTERISTIC VALUES
DEGREE OF
= = 1.4
FREEDOM u = 0.6 w=1
AR A AR M
- 1.13400 0.60206 - 0.73379 - 1.0
Flapping
- 1.13400 - 0.60206 - 2.56010 1.0
- 0.00353 0.56195 - 0.00534 0.56206
Lead-Lag
- 0.00353 - 0.56195 - 0.00534 - 0.56206

Examination of these results indicates gualitative agreement
with the results of the analysis by direct time integration but
there is evidence of some differences in gquantity. At u = 0.6, the

flapping motion should damp by a factor e ~ = 0.135 in 4/(=1g)

= 3.527 radians of azimuth change, by the result obtained here,
whereas Figure 4 indicates a much more rapid decrease. On the

other hand, at y = 1.4, the factor e”? should apply to the flapping
motion for a change of 4/(—AR) = 5.452 radians, but Figure 5 indi-

cates that the flapping motion is considerably less stable than
that.

From the qualitative viewpoint, the comparison is more favor-
able. The decrease in stability of the flapping degree of freedom
with increasing u is in evidence in the result obtained here,
since AR is less negative at u = 1.4 than at u = 0.6. The sta-

bility of a given system is determined, of course, by the least
negative, or most positive, value of AR' Also, in agreement with

the indications of Figures 4 and 5, the lead-lag motion is only

slightly damped, with a factor e~ ? decrease occurring in 1,130
radians at 4 = 0.6 and in 750 radians at u = 1.4.

The gqguantitative differences in the predictions of the flap-
ping motion can be attributed to the nonlinear effects which are
included in the direct-integration solution, but which are absent
from the formulations analyzed here. This can be seen as follows.
With the rotor unloaded, as is the case here, the equations for
rigid-body flapping and lead-lag motion become decoupled when
linearized. Thus, any coupling of the motion which is detected
can be attributed, in this case, to nonlinear dynamic-coupling
effects. Since the motions plotted in Figures 4 and 5 were
initiated by a disturbance in flapping, the considerable lead-lag
motion must then all be due to nonlinear effects. Furthermore,
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the flapping motion for p = 1.4 at the higher azimuth angles
appears to have been excited by the persisting lead-lag motion,
resulting in an apparent damping of the motion which is much less
than would otherwise be the case.

Comparison With Experimental Data

Reference 10 reports the results of an experimental investi-
gation of the flutter of a model helicopter rotor in forward
flight. The model rotor had a single blade with a radius of four
feet and with a flapping hinge through the axis of rotation. The
blade had a constant chord of 3.5 inches and a root cutout of 6
inches. 1Inertial and elastic properties of the blade are given in
Reference 10. The blade was relatively stiff in torsion, but the
control system was made flexible, so the primary contributions to
blade motions derived from rigid-body pitch, flapping motions and
deflections in the first flapwise bending mode. The main parame--
ters of the study were advance ratio, control system stiffness
and chordwise mass center location.

The case selected for comparison had a ratio of first flap-
wise bending freguency m¢1 to control frequency meo (nonrotating)

of 1.31 and a chordwise mass center location of 42.5% of chord aft
of the leading edge, giving a value of 0.139 for equivalent mass
center location as defined in Reference 10. This case was chosen
because the data as plotted in Figure 8e of Reference 10 indicated
there should be a relatively large change in stability with ad-
vance ratio. Natural frequencies and mode shapes for the first
three coupled modes of the blade were calculated for a value of
the ratio weo/ﬂ = 4.37, and Fourier coefficients of the coeffi-

cients of the equations of motion were calculated for values of
advance ratio p of 0.0, 0.09, 0.175, 0.24 and 0.30. The Fourier
coefficients for each value of u were supplied to the main com-
puter program and the system characteristic values computed.

Subsequent to these calculations, it was determined through
communications with one of the authors of Reference 10 that the
data of Figure_8e of that reference were mislabelled. The symbols
for values of w¢1/w90 of 1.31 and 0.63 were reversed. The experi-

mentally determined flutter boundary actually corresponding to the
calculations performed, consisting of a plot of meo/ﬂ versus u,

taken from Figure 8e of Reference 10, is reproduced in Figure 6.

The points at which characteristic values were calculated are
indicated by asterisks on the line drawn at weo/ﬂ = 4,37.
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As can be seen from Figure 6, the mislabelling of the data
has led to a rather unsatisfactory comparison of theory with
experiment. The experimental data shows very little change with u.
Hence, for a comparison with this case, the characteristic yalues
should have been determined at several different values of meO/Q,

for fixed n, rather than at fixed Eeo/nfor various values of u.
Unfortunately, time limitations prevented carrying out more ex-
tensive calculations. However, some information can still be

derived from the calculations which were performed.

The characteristic values obtained for each advance ratio
are as follows:

= 0.0 o= 0.09 p = 0.175
‘R A ‘R ‘1 *r A
- 0.06273 0.02028 | - 0.06271 0.02800 | - 0.06266] 0.02871
-~ 0.06273 | - 0.02028 | - 0.06271| - 0.02800 | - 0.06266| — 0.02871
- 0.33052 0.20163 | - 0.33055 0.20185 | - 0.33068 0.20267
- 0.33052 | - 0.20163 | - 0.33055| - 0.20185 | - 0.33068| - 0.20267
- 0.47015 0.08874 | - 0.47016 0.08954 | - 0.47012 0.09152
- 0.47015 | - 0.08874 | - 0.47016 | - 0.08954 | - 0.47012 | - 0.09152
o= 0.24 w = 0.30
‘g Ar A i
-~ 0.06268 0.02957 - 0.06283 0.03060
~ 0.06268 | - 0.02957 - 0.06283 |- 0.03060
~ 0.33120 0.20366 - 0.33227 0.20489
- 0.33120 | - 0.20366 - 0.33227 |- 0.20489
-~ 0.47010 0.09342 - 0.47013 0.09510
-~ 0.47010 | - 0.09342 - 0.47013 |- 0.09510
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o) o.l 0.2 0.3 0.4
u
Figure 6. Experimental flutter boundary for a model

rotor blade. Ratio of nonrotating pitch
natural frequency w to rotational speed @

o
versus advance ratio u, for B¢1/Eeo = 1.31
and x_/C = ,139 (from Reference 10). Points

at which characteristic wvalues were calculated
are indicated by asterisks.
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The results of the calculations indicate, first, that the stability
of the rotor for the control stiffness selected is essentially in-
dependent of advance ratio over the range of u considere@. The
relative insensitivity to advance ratio changes is certainly in
agreement with the plot of Figure 6. Secondly, it should be noted
that the rotor is predicted to be very nearly unstable. The value

for xR of -~ 0.063 indicates that about ten rotor revolutions are

required to damp the motion by a factor e 2, The limited galcula—
tions which were performed, then, are at least in qualltatlvg .
agreement with the experimental results. A definitive quantitative
comparison must await more extensive calculations.

CONCLUDING REMARKS

A method has been developed for analyzing the aeroelastic
stability of helicopter rotors in forward flight. The method
employs formulations for calculating the characteristic values
of the perturbation equations of motion, the latter being a
coupled set of second-order, linear differential equations with
periodic coefficients. The characteristic values, which are the
zeros of an infinite determinant, are calculated from an equiva-
lent analytic form for the infinite determinant consisting of a
finite sum of trigonometric functions.

A digital computer program was prepared which implements the
method for three degrees of freedom. Calculations of charac-
teristic values carried out for a test case demonstrated the
practicality of the method, with anticipated results generally
obtained to four significant figures.

Calculations were carried out for comparison with results of
a direct time integration on a digital computer of the equations
for a rigid rotor blade with flapping and lead-lag hinges. The
results were in qualitative agreement. Quantitative differences

were attributable to the nonlinear effects which were included in
the direct time integration.

Lastly, limited calculations were performed for comparison
with experimentally derived flutter boundaries for a model rotor
blade with three degrees of freedom. The calculations indicate
that the rotor is only marginally stable at the control stiffness
selected and that the stability is relatively insensitive to ad-
vance ratio, in agreement with the experimental results.
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APPENDIX A

Relationship
Original and

Let X9 be a solution of

Among the Solutions of
Differentiated Systems

d3x, dax
+ C + DXy = 0 (A~1)
dz3 dz
as well as of
d“X, dx,
+ E + FXg = 0 (A~-2)
dz " dz
From Eqg. (A-2),
datx, —2 —dXO
d”A , 2dB _ ap - 9 (a2) - |92 4 B - aZ|a
dz* dz? dz dz dz _|dz
2
d°B _d  (ap) - g—A—+B—A2BXO=O_
dz? dz dz B
(A-3)
But Egq. (A-1l), differentiated once, gives
d"Xg da d®Xq a?a , d8 _ 4 ds dXo
= - |— + B - AZ + — - — (A?) + — - AB|—
dz* dz dz? dz? dz az dz dz

(AB) X, .

_1a*B _4a_
dz? dz (a-4)
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If (A-4) is substituted in (A-3), a number of terms cancel and a
common factor can be extracted, with the result that

d?Xg
- |82 4 B - a2 + A
dz dz?

Thus, Xy must be a solution of the original equation, Eg. (10).

dxg
+ BXO = 0
dz

It is, of course, also true that every solution of Eq. (10) is a
solution of Eq. (A-1) and of Eg. (A-2). Thus, X; is a solution

of Eq. (10) if and only if it is a solution of both Eq. (A-1) and
Eq. (Aa-2).
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The program was coded in FORTRAN IV.

APPENDIX B

Listing of Basic Computer Program — e ettatn Shee ¥

A CDC 6400 digital

computer was employed for all calculations.

PROGRAM QCINPUT,OQUYT2UT,TAPES=INPUT,TARE6=QUTPUT)

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
NIMENSION
DIMENSION
NIMENSION
DIMENSTON
DIMENSION
DIMENSION
NIMENSIQON
DIMENSION
NIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
NIMENSION

THE GR ANU Gl

THROUGHOUT

L2(5)

ER(350),EI1(350),FR(350),FI1(350),FFR(150),FFI(150)
DELT(150),ALPAHA(150),BETA(150),GAMMA(150)
GR(5000),31(5000)

Cl1(250),03¢250),D1(250),DuUM(810)
YRO(9),Y19(3),YR12(12),Y]12(22),BIGA(9),BIGAH(13),Y¥(13)
AK9(9),AK12(13),NYR9(11),DYI9(11),DYR12(12),DY112(12)
SIGMA(7)
XI9(10),ET9(10),X112¢(13),ET12(13),X16(7),ETA6(7)
R12TR(13),R12T1(13)
AUM(1,1),AY(15),AR(125),A1(125),BR(125),81(125),CR(250)
PS19(9),R06TR(6),R06TI(6),NDRY(9),NDIQ(9),NDR12(12)
NDI12(12),DETR(12),DETI(12),PIRNEW(12),PIROLD(12)
PIINEW(12),P1I0LD(12),AUMRY(8,14),AUMI9(8,14)
AUMR12(11,14),AUuMI12(11,14)
ROLY(9),PS112(13),5TA9(10),ETAL2(13)
RR(20),RR1(20),R00T1(20),RO0TR( 20),2(20),Y(20),PJoLY¥(20)
XR(12),x1(12)

CCH(150),CC(1350),PS16(7)

RR12(13),3RI112(13)
A9(9),B9(3),C9(9),AH(12),BH(12),CH(12)

ICHG(15)

ARRAYS ARE DETERMINANT ELEMENT STORAGE NOT NEEDED
THE PROGRAM AND ARZ AVAILABLE FOR FOR OTHER USES 3EFORE

AND AFTER THE UEBTERMINANT ROUTINE

EQUIVALENCE(ALPHA(1,1),AR(1)),(BETA(1,1),A1(1)),(GAMMA(1,1),3R(1))

FRQUIVALENCE

(DELT(1,1),31(¢(1))

FEQUIVALENCE(RL12TR(1),0UMC1Y) (R12TI(1),DUMC15))(AY(1),DUM(30))
EQUIVALENCE(PSIO9(1),DJM(50)),(RO6TR(1),DUM(60)), (RO6TI(1),DJ4(70))
EQUIVALENCE(NDRO(1),DJM(B0)Y), (NDIQ(L),DUM(90)), (NDR12(1),DUM(100))

EQUIVALENCE

(DYRZ(1),0UM(115)),(DYI9(1),DUM(130) ), (RR(1),DUM(145))

EQUIVALENCE(DYR12(1),0UM(166)),(NDI12(¢(1),DUMC180))
FQUIVALENCE(DETR(1),DUM(L93)),(DETI(1),DUM(206))
EQUIVALENCE(PIRNEW(1),DJM(220)),(PIROLD(1),DUM(233))
FQUIVALENCE(PIINEW(1),DJUM(246)),(PII0OLD(1),DUM(260))

EQUIVALENCE

(AUMRO(1,1),0UM(273)), (AUMED(1,1),DUM(386))

EQUIVALENCE(AUMR12(1,1),DUM(500)),(AUMI12(1,1),DUM(655))
EQUIVALENCE(AK9(1),53R(1)), (A<12(1),GR(10)),(SIGMA(1),GR(25))
EQUIVALENCE(GR(35),XI12(1)),(ST9(1)sGR(45)),(X112(1),GR(60))
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o NeNe;

F

1001

7731
7345
7734

157%

ORMULA FOR GR,Gl,ALP-HA,BETA,GAMMA,DELT IS 3(ND+1)#+2
MAINFRAME PROGRAM FOX THE NASA FLUTTER

REAL MU

NUMMA=]

INP = 0

NQ= 9
LK = NF A SPECIIFIED INTEGER USUALLY LESS THAN 3

NIN=%

NP=6

NOUT=NP
FORMAT(1HO*START*)
WRITE(NP,1001)
WRITF(NP,1001)
LI=3

LJd=z3

MU=,9

GAMMAP=2,

NF=3

LK=NF

Nz=NF

K=1

LM = 3

LJdl1 = LJ+l
FORMAT(8F10.4)
FORMAT(4E13.4)
FORMAT(1X, I3, *,+[3>,+[3, 4E20,8)
L=3LLGO

L=3LMKK

ng 1%75 MM=z1,250
DUM(MM) = 0
CONTINUE

KENzSLKEN
L2(¢(1)=2LSA
L2(2)=4LCLAD
.2(3)=3L0SF
L2(4)=0

CALL SEGMENT(KENs1,.2,1,NUMMA)

FOR A FLUTTER RUN CAlLL SA FO0R THE AR, Al, BR, BI

CALL SA(AR,AI;BR'BI:LIpLJ,NFnGAMMAPlMUpDEG)
L2(1)=3LS1B

46



o Re] oo ReNe] o Reole]

Dan

L2¢(2)=0

CALL

SEGMENT(KEN»1,1.2,1,0)

GET CR(IJK) AND Cl(IJK) 3Y THIS CALL TO GET INPUT FOR SECT2A

CALL S1B(QUTPUT,CR,ZI,INPUT,AR,AR,AT,Al,BR,BI,LIsLJ,LK,NF,N2)
GET THE UR(IJK)», AND DICL1JK) BY THIS CALL
WHFRE DUM 1S A DUMMY VECTIR OF LENGTH BR(IJK)Y BUT ZER0O EVERYWHZRE
CALL S1B(OUT,DR,DI,IN,AR,3R,4[,BI,D0UuM,DUM,LTI,LJI,LK,NF,NP)
L2¢1)=3LS1C
L2(2)=0
CALL SEGMENT(KEN,»1,_.2,1,0)
GET THE eR(IJK), AND EICIJK) BY THIS CALL
CALL S1C(AR,A].CKR,CI1,CR,CI,DR,D1,ER,EL,LI,LJ,LK,NF)
GET THE FR(IJK),» AND FI(IJK) BY THIS CALL
CALL S1C(BR,BI,CR,CI,DR,0D[,DJ™MsDUM,FR,FI,LI,LJ,LK,NF)
PI=3,1415926
NDELTA= ,0u01/PI
L2(1)=2LS$
L2(2)=4LPRUD
L2(3)¥=0
KEN=3LLGO

GET THE EVALUATION 20NTS FOR THE 9TH AND 12TH ORDERS

CALL
CALL
CALL

SEGMENT(KEN,L1,.2,1,NUMMA)
S3(1,PS19,ETA9,YR9,Y19,49,[N,DELTA,CR,DR,NF,9,NP)
S3(1,PS112,ETAL12,Y312,Y112,K12, IN,DELTALER,FR,NF,12,NP)

ouUT=0
FPS=,000000000001
DELTAX= ,00000000G01L

IN=

L=3LMKK
L2(2)=2LUP
1L2(3)=3LPRE
L2(1)=3LS2A
L2(4)=0
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aan

QO

ana

aqn

1186

KEN=3LKEN
CALL SEGMENT (KEN,1,0L2,1,NUMYA)

D DOES SETUP AND FINDS ALL CONVERGED DETERMINANTS

CALL D(FFR,FFI,GR,Gl,ALPHA,BETA,GAMMA,DELT,CR,C1,DR,DI,AUMRI,AUMI]IG,
1,AUMR12,AUMI12,DYR9,DY19,PIRILD,PIRNEW,YR9,YI9,NDRO,ND19,9,K9,1,N)
CALL D(FFR,FFI,GR,GI,ALPHA,BETA,GAMMA,DELT,ER,EIFR,FI,AUMR9,AUMIG
1,AUMR12,AUMI12,DYR12,0YI112,PII0LD,PIINEW,YR12,Y]112,NDR12,NDI12,
212,K12,1.N)

L2(1)=2L54

L=3LMKK

L2(21=0

SET UP THE 9TH ORDER SIMULTANEQUS EQUATIONS
TAKING ADVANTAGE OF COMPLEX =~DETERMINANT PAIRS

CALL SEGMENT(KEN,1,12,1,NUMMA)
CALL S4(CC,BIGA,A9,39,C3,XR,X[,U,PSI9,ETA9,9,K9,P1,DYR9,DYIF,¥R9,

1 v!9)
SOLVE THE SIMULTANZOJUS EQUATIONS
CALL SIMQ(CC,9,BIGA)
SET UP THE 12TH QRDEXR SIMULTANEOQOUS EQUATIONS

CALL S4(CCH,BIGAH,A<4,3M,CH,XRH:sXIH,U,PIS12,ETAL12,12,K12,P],
1 DYR12,DYi12,YR12,YI12)

L2(1)=4LSIMQ

L2¢2)=0

CALL SEGMENT(KENfllL2:1:NUMMA)

SOLVE THE SIMULTANZOUS EQUATIONS

CALL SIMQG(CCH,12.,813AH)
L2¢2)=0

L2(1)=3LS5A

L2(2)= 3LTEA

L2¢(3)=4LPRAD

L2(4)=0

CALL SEGMENT(KEN,1,L.2,1,NUMMA)
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aoaqn

s Ee Ne R ]

c
C

1177

1175

1171

SET UP THE POLYNQOMIAL COEFFICIENTS FOR THE 9TH ORDER AND GET

CALL SS5A(0UT,AK9,IN,K3,4,BIGA,B9,C?, [ERR)

AY(L1) = AK9(9)

AY(2) = AK9(8)

AY(3) = AKS(7)

AY(4) = AK9(6)

AY(5) = AK9(5)

AY(6) = AK9(4)

AY(7) = AK9(3)

AY(8) = AK9(2)

AY(9) = AK9(1)

AY(10) = 1,

GET THE POLYNOMIAL ROOTS

CALL PRODCAY,9,RR,RRI,YY.NUY,IERR)
THE PS1 AND ETA FROY SUSRQUTINE TEA
CALL TEA(9,6,RR,RRI,XI9,ET9)

K12 = KTWELYV
SET UP THE 12TH ORDER POLYNOMIAL COEFFICIENTS

CALL S5A(0UT,AK12,1IN,%X12, 6,31GAH,8HsAH,CH, JERR)

AY(1) = AK12(12)
AY(2) = AK12(11)
AY(3) = AK12(10)
AY(4) = AK12(9)
AY(5) = AK12(8)
AY(6) = AKL2(7)
AY(7) = AK12(6)
AY(B) = AK12(5)
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s ReRe]

¢ N Nel

1169
c

v e N

1167

AY(9) = AK12(4)

AY(10) = AK12(3)
AY(11) = AK12(2)
AY(12) = AK12(1)
AY(13) = 1,

GET THE ROQOTS FROM PRQ@D

CALL PRuYD(AY,12,R12TR,312T1,YY,NUM, IERR)

GET THE 12TH JORDER PS] AND £TA FROM TEA

CALL TEA(12,6,R12TR,R12TI,X112,ET12)

ON TO SECTS6

L2(1)=2L5S6

L2(2)=0

L2(3)=0

KEN= 3LLGO

CALL SEGMENT(KEN,LZ2,1,NJMYA)

GET THE COMMON POLYNOMIAL COEFFICIENTS

CALL S6(0UT,SIGMA,IN,AK9,AK12,NP)

2(7) = 1

7(6) = SIGMA(L)
Z(5) = SIGMA(2)
7(4) = SIuUMA(S)
Z(3) = SIGMA(4)
7(2) = SIGMA(S)
Z(1) = SIGMA(6)
KEN=3LLGO

L2¢(1)=4LPRAD

L2(2)=36TEA

L2(3)=3LPAT

L2(4)=0

CALL SEGMENT(KEN,1,.,2,1,NJUMMA)

GET THE 6TH ORDER R0J7S
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CALL PRQD(Z,6,R06TR,R06TI,YY,NUM, IERR)

GET THE 6TH ORDER 2SI AND ETA FROM TEA

Qoa

CALL TEA{6:6,R06TR,R05TI,,XI6,ETAS)
GA=GAMMAP

[ ]

GET THE FINAL QUTPUT SHzETS

o Ne]

CALL PAT(AUMRY,AUMR12,PS19,PSI112,XI9+4X112,X]16,ETAQ,ETAL2,ET9,ET1?
1,ETAG, GA,MU,NF,R3,3RI],R12TR,R12TI,R06TR-RI6T]IsNDR9,NDR12, YRI, YR
212,PIROLD,PIRNEW,PIIOLD,PIINZW,AUMI9»AUMI12,NDIGNDI12,Y19,YI12)

sTOP

END

NOLIST

*END
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SUBROUTINE SA(AR,Al.,BR,B8I,LIsLJ,NF,GAMMAP,MU,DEG)

DIMENSION Y( 30),YY( 30),W¢ 30),WW( 30),22¢C 30),21¢ 30),AM0(30),
1 CLA(30),APHI1(30),3PHI1(30) ,AR(125),A1(125),BR(125),BI1(125)
DIMENSION APHI2(30),BPHIZ2(30)

SUBROUTINE FOR GENERATING THE AR, AI,BR,BI, FO THE NASA FLUTTER
EQUATIONS.

REAL, MU,MU1,MUSIPH,MUCOPH, MZZERO,MUZERD,MOXPHI,MBZPHI

SET UP EXTERNALS CLACIY, AMO(I), GAMMAP, MU

LK =NF

NF2 =z 2,*NF

ANF2 = NF2

DEG= 360.,/ANF2

NP = 6

LJ1 = LJ+1

AMO(1)
AMO(2)
AMOD(3)
AMD(4)
AMO(5)
AMO(6)
AMOC(7)
AMO(8)
AMO(9)
CLA(L)
CLA(2)
CLA(3) =6,517
CLA(4)= 6,876

M H W H N Yo

CLA(S) = 7,792
CLA(6) = 8,594
CLA(7) = 9,072
CLA(8) = 10,027
CLA(9) = 10.027
Do 50 1,11

I =
DO 50 J = 1,LJ
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DO 50 K = 1,NF
IJK = (I«LI-LJl+J)wLKeK

ARCIJK)Y = 0
ATCIJK) = 0
BR(IJJK) = 0
BICIJK) = O
CONTINUE
NINT = 20

ANINT = NINT

G = (.97=.2)/ANINT
H = (1,~,2)/ANINT
Pl = 3,1415926536

PI2 = P1/2,

NF2 = NF#2

ANF 3 NF

RNF = 1,/ANF

PHI =(PI*ANU)/ANF

MU1= 1, + MU

P1180 = P1/180,
NDEG = 360,/DEG
NINT=NINT+1

DO 1 NPHI = 1,NDEG
ANPHI = NPHI=-1

PHEYE=S ANPHI*DEG

PHI = ANPHI«PI180#DZG

COSPHI = COS(PRHI)
SINPHI = SIN(PHI)
MUSIPH = MU*SINPHI
MUCOPH = MU%CQSPHI

NINT1 = NINT+1
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52
55

57

56
59

No 2 J= 1,NINT1
CHAY = J=1
L = J+1
7 = 2+CHAY*G
X = .2+ CHAYwH
ZMU = Z+ MUS]PH
EMU = X+ MUSIPH
MZZERQ= ABS(ZMU)
MUZERO = ABS(EMUY)
IF(EMU) 52,53,53
AOXPHI = 0
GO TO 55
AOGXPHI = PI1
MOXPHIT = (4+8«MUZERD)/MU1L
IF(ZMU) 56,57,57
ANZRHI = 0
GO TG 59
AQZPHI = PI]
MOZPHI = (+8¢MZZERDO) /MUl

CALL CLAD(PI,AMO,CLA,AOXPHI,MOXPHI,CLX,CDX,»NP,I1ER)
CALL CLAD(PI,AMG,CLA,AQZPHI,Y0ZPHI,CLZ,CDZ /NP, 1ERR)
MUZERO* (X~ ,(5)*(X=,

YYod)
Y(Jl =
WWJ)
WiJd) =
2Z(J)
Z1¢J)
CONTIN

M

M

UE

UZEROw (X=,035)*CDX
MIZERO»Z*Z*CLZ
ZZERO*xZ»C| 7
MUZERO*X*X*CDX
MUZERO#X*CDX

05)%CDX
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DO 2 J= 1,NINT1

CHAY = J-1
L = J+1
7 = ,2+CHAY»(

X = ,2+ CHAY+*H
IMU = Z+ MUSIPH
EMU = X+ MUSIPH
MZZERO= ABS(ZMU)
MUZERO = ABS(EMY)
[F{EMU) 52,53,53
ADXPHI = O
GO TO 55
AQXPHI = P1
MOXPHI = (,8+«MUZERQO)/MU1L
[F(ZMU) 56,57,57
ANZPH] = 0
GO TO 5S¢
ADZPH] = P]
MOZPHI = (,8*MZZERD)/MU1
CALL CLAD(PI,AMO,CLA,AQGXPH]I,MOXPHI,CLX,COX,NP, IER)
CALL CLAD(PI,AMO,CLA,AQZPHI,M0ZPHI CLZ,CDZ,NP, IERR)
YY(J) = MUZEROw#(X<=,D3)*(X=,05)%CDX
Y(J) = MUZERO*(X=,05)*CDX
WW(J) = MZZEROwZ*Z*2 2
W(J) = MZZERO*2xC| 2Z

ZZ(J) = MUZERO#*X*X*CDX
Z1(J) = MUZERO*X*CDhX
CONTINUE
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CALL QSF(HsYY,YYsNINT)

CALL QSF(H,Y,Y,NINT)

CALL QSF( G,WW,WW,NINT)

CALL QSF(G,ZZ,ZZsNINT)

CALL QSF(GsW,W,NINT)

CALL QSF(H:Z1,Z31,NINT)

APHIL(NPHID) YY(NINT)

BPH]IL(NPHI) MUCOPH*Y(NINT)

APHIZ2 (NPHI) 0.4286874w (WW(NINTY + ZZ(NINT))
BRPHI2(NPHI) 0.4286874«C W(NINT) + Z1(NINT))
CONTINUE

N0 15 K = 1,NF

K1l = (L1-LJ1+1) " KsK

K22= (L]*2=LJ1+2)«[ K+K

AK1 = K-1

PIAKL = PI*AK1

VALUE1L
VALUE?2
VALUE3
VALUEZ
VALUE4
VALUES
VALUES
VALUE7
VALUES
DO 10 L = 1,NF2

ANY = L-1

PIKINU = (PIAK1xANU)ZANF
CASPI=COS(PIK1INY)

SINPI = SIN(PIK1NyU)

VALUE1 = VALUE1l +APA4I1(L)+COSPI

nyn o

LU LR | S | I U (I VI [ I 1
OCCococococaocooo
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VALUE3 = VALUE3 +BPHIL1(L) e COSPI
VALUE4 = VALUE4 +BPHIL(L)*SINPI
VALUES = VALUES+APH]2(L)*COSPI
VALUES = VALUE6+APH]2(L)*SINP]
VALUE7 = VALUE7 +BPH12(L) *COSP]
VALUES = VALUESB + BPHI2(L)+ SINPI

10 CONTINUE
AR(K11) = VALUEL1*RNF«GAYMAP
AR(K22) = VALUES*RNF «GAMMAP
AT(K11) = =VALUEZ«RNF  #GAMMAP
AT (K22) = =VALUEG6#RNF*GAMMAP
RR(K11) = 2,«VALUE3#RNF «GAMMAP
BR(K22) = 2,%VALUE7*RNF *GAMMAP
RI(K11) = =2,*VALUE4*’NF *GAMMAP
BI(K22) = =2,%VALUES*ANF *GAMMAP

15 CONTINUE
K221 =(2+L1-LJ1+2)+LK+1
BR(K221) = BR(K221)+4,
K111l =(LI-LJ1+1)% K+l

RR(K111) = BR(K11i) + ,3157836
K133 = (3oL [-LJ1+3)#LK+1
K233 = (3aLI1-LJdL1+3)*LKs?2
AR(K133)=2,

BR(K133) = 2,

AR(K233) = 1,0

RETURN

END
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SUBROUTINE CLAD(PI,AM,CL,A,AMO,CLX,CDX,NP,IERR)
DIMENSION AM(1) » CL(1)
IERR=D
IF (A=PI)1,2,1
2 CLX= 5,73
CDX= 0,02
RETURN
1F(A) 999,4,999
CDX=0,01
3 MA = AMO*10. + 1.
IF(MA-11) 40,40,41
41 IERR=2
RETURN
40 GO TO ¢100,101,101,101,104,105,106,107,108,108,108),MA
100 CLA = CL(1)
GO TO 111
101 CLA= (AMO-AM( 2))#( CL(2)-CL(1))+CL(2)
GO TO 111
104 CLA = (AMO=AM(3)) *(CL(4)-CL(3))+ CL(3)
GO TO 111
105 CLA = (AMO~AM(4))w(SL(S)=CL(4))+ CL(4)
GO TO 111
106 IF(AMO-AM(6))60,60,51
60 CLA = (AMO=AM(5)) *(CL(H)-CL(S))+ CL(5)
GO TO 111
61 CLA = (AMO=AM(6))* (CL(7)-CL(6)Y)Y+ CLC(6)
GO TO 111
107 1F(AMO~-AM(8)) 63,108,108
63 CLA s(AMO-AM(7)) » (CL(8)-CL(7))+ CL(?)
GO TO 111
108 CLA = CL(8)
111 CLX=CLA
RETURN
999 IN=1
RETURN
END

B
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SUBROUTINE QSF(Hs»Y,Z,N\NDIM)
NDIMENSION Y(1),2(1)
HTz,33333353%H

INTEGRATION BY SIMPSONS RULE
[F(NDIM-5)7,8,1
SUM1=Y(2)+Y(2)
SUM1=SUML+3UML
SUM1=HT#(Y(1)+SUML+Y(3))
AUX1=Y(4)+Y(4)
AUX1zAUX1+AUX1
AUX1=SUML+HT*(Y(3)+AUX1+Y(5))

AUX2=HT#(Y(1)+3,875+(Y(2)+Y(5))+2,625%(Y(3»+Y(4))+Y(6))

SUM2=Y(5)+Y(5)

SUM2=SUM2+SUM2
SUM2=AUX2-HTw (Y (4)+35UM2+Y(6))
7(1)=0,

AUX=Y(3)+Y(3)

AUX=AUX+AUX
Z(2)=SUM2~HT*(Y(Z)+AUX+Y(4}))
7(3)=SUM1

Z(4)=SUM2

IF(NDIM-6)5,5,2

INTEGRATION LOOP

no 4 [=7,NDIM,2

SUM1=AUX1

SUM2=AUXZ2

AUXI=sY(T=1)+Y(I-1)
AUX1=AUX1+AUX1
AUX1=SUML+HT*(Y(1=2)+AUX1+Y (1))
Z{1-2)=5UML

IF(I-NDIM)S,6,6

AUX2=Y(TI+Y (D)

AUX2=AUX2+AUXZ
AUX2=SUM2+HT* (Y (=1 )+AUX2+Y(]+1))
Z(i=1)=8SUM2

Z(NDIM=1)=AUX1
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10

11

12

Z(NDIM)=AUX2

RETURN

Z(NDIM~1)=5UM2
Z(NDIM)=AUX1

RETURN

END OF INTEGRATION LOOQP

[F(NDIM-3)12,11,8

NDIM [S EQUAL TO0 4 JR 5
SUM231 ,125#HT#(Y(1)+Y(2)+Y(2)+Y(2)+Y(3)+Y(3)+Y(3)+Y(4))
SUML=Y(2)+Y(2)

SUM1=SUM1+SUM1
SUMLsHT» (Y (1) +SUML1+Y(3))
Z(1)=0,

AUXL=Y(3)+Y(3)

AUX1=AUXL1+AUX]
Z(2)=SUM2~HT*(Y(2)+AUX1+Y(4))
IF(NDIM-5)10,9,9
AUXL2Y(4)+Y(4)

AUX1=AUX1+AUX
Z(5)=SUML+HT*(Y(3)+AUX1+Y(5))
Z(3)=SUM1

Z(4)=SUM2

RETURN

NDIM IS EQUAL T0 3
SUML=HT*(1,25%Y(1)+Y(2)+Y(2)~,25*Y(3))
SuUM2=Y(2)+Y(2)

SUM2=SUM2+SUM?2
Z(3)=HT=(Y(1)+SUMR+Y(3})

2(1)=0,

Z(2)=SUML

RETURN

END
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SUBROUTINE S1B(OUT,CR,Cl,IN,AR,BAR,Al,BAI,BR,BI,LI,LJ,LK.NF,NP)
DIMENSION CI(1), CR(1), AR(1), BAR(1), BAI(1), Al(1), BR(1), Bl(1)
CALL SECTL(CR,CI,AR,AR,AI,AL,3R:BI,LI LJ,LK,NF)
FOR THE CALCULATION QF THE CR(I,J,K) AND THE Cl(I,J,K) USE..,
FOR THE CALCULATION OF THE DR(I,J,K) AND THE DI(I,J,K) USE..,
CALL SECTI(DR,D1,AR,8R,A1,B1,DUM,DUM,LT.LJ,LKsNF)
WHERE DUM IS A VECTOR AS LONG AS BI AND BR BYT = T0 ZERO EVERYWHERE

THE IMPUT 70O THIS PROGRAM CONSISTS OF THE COMPLEX FOURIER COBRFFICIENTS
OF 18 PERIODIC FUNCTIONS, SPECIFICALLY, THE PROGRAM IS TO BE SUPPLIED

NITH-o.
AREALCI,»J,K) AIMAG(T,J,K)
BREAL(I,J,K) BIMAG(I,J,K)
FOR 1 = 1, 2, 3
FOR 4 = 1, 2, 3
FOR K = 1,2, s o o NF

WHERE NF 1S A SPECIFIED INTEGER

THIS SUBROUTINE [S A BRANCH THAT PROCEEDS FROM THE CALCULATION
OF COMPLEX FQURIER COEFFJCIENTS FOR 18 FUNCTIONS RELATED TO THE ABOVE,

- .- ® - e - - e e e e g w ® wm W B e e @ ® e ® . o= o= w® w W ® w

EAUATIONS FOR COMPJTAT]ONS

LJd=LJ+1

LJd1 = LJ-1

LK=NF

N2F1 = 2 * NF -1
NF1 = NF + 1

KL = 2+«NF-1

Do S5 I=1, LI

DO 5 J = 1, LJ1
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te ]

IKL = (Lixl-LJ+J)ek,
IJs(LD » 1 =LJg+d)elK
FOR ¥ = 1, 2, «.1 NF

DO 55 K = 1 , NF

AK = K-1

TJKL = TKL+K

IJK = 1J + K

CICIJKL)Y) = 2,% AK * BAR(IJK) <+ BI(1JK)

CR(IJKL)Y=Z =2, #AK*BAI(]JK) + 3R(]JK)
PERFORM THE SUMMATIQNS

CONSTR =0

CONSTI = U

N 7 L= 1, 3

IL = (LI*xl= LJ + L)=LK
JL=z (LI*L -Lu+Jddwl<«

CONST1 =0

CONST4 =0,

N0 1 N =1 , K
ILN = IL+N
LJKIN = JL + K +1 =\
ARILN = ARCILN)
BRALJK1=BAR(LJKIN)
ATILN=ATCILN)
BILJK1=BAI(LJKIN)
APPLE= BALUK1+ARILN
PEAR = AIILN*BILJK1
CONST1 = CONST1+APP_E-PEAR
CONST1=CONST1+ARILN#BALJK1-AIILN*BILJK]
APPLF=ARILN=BI]L JK1
CONST1L = CONST1 + ACILN) « 3AR(LJKIN) = AILCILN) » BAI(LJKLIN)
CONST4 = CONST4 + ARCILNY + 3AL(LJKAINY + AI(CILN) + BAR(LJKLN)
PEAR = AIILN*BALJKI]
CONST4=CONST4+APPLE+PEAR
15 CONTINUE
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16

1

1

NOTE ,
CONST2 0

CONSTS 0

IF(NF-K)Y 17, 17, 16
NFKsNF =K

DO 20 N=1, NFK

ILN1 = IL * N + 1

LJINK=JL+N+K

ILNK = IL + N + K

LINL = JbL + N +1

ARILN1=ARCILN1)

RRL JNK=BAR (L JNK)

ATTLNI=ATCILND)

BILJNK=BAI (LJINK)

ARTLNK=AR (ILNK)

RRLJUN1=BAR(LJNL)

ATTLNK=AT CILNK)

BILJN1=BAI(LJNL)

APPLE=ARILN1+BRLJNK

PEAR = ALILN1#BILJN%

PEACH=ARILNK*BRLJN1

PLUM = ATILNK*#BILJN1

CONST2 = CONST2+APPLE+PEAR+PEACH+PLUM
BILJN1

o THE LAST SUM ON N IS OMITTED FOR K = NF

CONST2=CONST2+ARILNL*BRLJNK+ATILNI*BILINK+ARILNK*BRLJNLI+ATILNKY

CONST2 = CONST2 + AR(ILN1) » BAR(LJNK)

+ ALCILNL) + BAT(LJNK)

ARCILNK) » BAR(LJN1) + AL(CILNK) ® BAI(LUND)

APPLE=ARILNI=BILJNK
PEAR = AIILN1+BRLJNK
PEACH = ARILNKw*BI{JN1
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PLUM = ATILNK#BRLUN1
CONST5 = CONSTS + APPLE-PEAR~PEACH+PLUM
CONSTS = CONSTS+ARILNAwWBILUNK=ATILNL1*BRLUNK=ARILNK*BILJNI+ATILNKS
1 BRLJN1
CONSTS = CONSTS + AR(CILN1) » BAI(LJINK) - AI(ILN1)* BAR(LJNK) -~
1 ARCILNK) » BAI(LJN1) + AIC(ILNK) » BAR(LJN1)
20 CONTINUE

17 CONSTR= CUNSTR + CONST1 + CONST?2
CONSTI = CONSTI + CONST4 + CONSTS

7 CONTINUE
CR(IJKL)= CR(IJKL)= CONSTR
CI(IJKL)= CIC(IJKL)= CONST]

55 CONTINUE

FOR K NF"l: NF“'2‘ "y e ZNF'].

DO 9 K = NF1,N2F1
CONSTR=0,0

CONSTI = 0,0

TJKL = IKL + K

bo 8 L= 1,3
IL= (LIw] =LJ+L)*LK
JL o= O LIxL ~LJ+Jd)*iK
CONST3 = 0.0
CONST6 = 0.0
KIN = K + 1 = NF

22 N0 30 N = KiN ,NF
ILN = IL+N
LJKLN = JL + K + 1 =N
ARTLN=AR(ILN)
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BRLJK1=BA
ATTLN=ALLS
BILJK1=BA
CONST3
CONST6
CONST3
CONSTS
CONTINU

mis i 0

CONSTR =
CONSTI=CO
ClIClJUKL)=
CR(IJKL)=
CONTINUE

CONTINUE
Ld= LJ-1

RETURN
END

R{LJK1IN)

TLN)

FTOLJKIND

CONST3+ARILN*BRLIUK1-ALIILN*BILJKL
CONSTE+ARILN*BILJK1+«AlILN*BRL UKL

CONST3 + ARCILN) » 3AR(LJKIN) - AICILN) e BAI(LJKLIN)
CONST6 + ARCILN) + 3AI(LJKIN) + AICILN) e BAR(LJIKIN)

CONSTR + CONST3
NSTI+CONSTS
~-CONSTI

-~ CONSTR
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20
25

30

SUBRGUTINE PROD(XCOJF,M,R00TR,R00TI,COF, NUM,IER)
DIMENSION XCOF(1),C)OF(1),R00TR(1),R00TI(1)

DOUBLE PRECISION X0,X3,Y0,Y0,X»Y,XPRsYPRIUX,UYsVsYT,XT,U
DouBLE PRECISION XT72,YT2,SUMSQ,DX.DY,TEMP,ALLPHA
COMPUTES THE REAL AND COMPLEX ROQTS OF A POLYNOMIAL
SING THE NEWTON RAPHSON [TERATION TECHNIQUE
PARAMETERS
COF VECTOR OF M+1 COEFFJCIENTS OF THE POLYNOMIAL

ORDERED FROM SMALLEST TO LARGEST POWER
COF A WORKING VECTIR QF SIZ=z M+t

M THE ORDER OF THE PALYNOMIAL
ROOTI RESULTANT VECTOR JF LENGTH M OF [MAGINARY PARTS
ROQTI(1) IS THE INITIAL VALUZ OF THE Y GUESS [MAGINARY PART
ROOTR RESULTANT VECTOR JF LENGTH M OF REAL ROOTS
ROOTR(1) IS THE INITIAL VALUE OF THE Y GUESS REAL PART
1ER ERROR CQDE
IER = 0 NJ EZRRIR
SURROUTINE POLRT(XCOF,CIF,M,300TR,R00T!,I1ER)
IER = 1 M IS LESS THAN 1
[ER = 2 M IS GREATER THAN 36
IER = 3 UNABLE TO DETERMINE ROOTS IN 50 ITERATIONS

IER 4 HIGH O03DER COEFFICIENT IS ZERO
PROGRAMMED 3Y K G BLEMEL
ReAsS,A, INC.,
ROCHESTER N.Y, 716 1
ROCHESTER N, VY, 716 271 3450
SUBROUTINE POLRT(XCOF,CQF,M,300TR,RQ0TI,1ER)
IFIT = ¢
NzM
l1ER =0
IF(XCOF(N+1))10,25,10
IF(NY15,15.,32
IER=1
RETURN
IER=4
GO TO 20
JER=2
GO TO 20

66



32
35

40
45

50

55

59

60

65

IF(N=36) 35,35,30
NX =N

NXX = N+1

N2 = 1

KJi = N«1

DO 40 L=s1,KJ1

MT = KJile-l+1
COF(MT) = XCOF (L)

X0 = .00500101
YO = 0,01000101
IN = 0

X = X0

X0 = -10,*Y0
YO = ~10,%X
X=X0

¥Y=Y0

IN = IN #+1

GO TO 59

IFIT =1

XPR = X

YPR = Y

ICT = 0

ux = 0,0

uy = 0,0

v = 0.0

YT = 0,0

XT = 1.0

U = COF(N=+1)
IF(UY 65,130,65
DO 70 I = 1,N

L = N =1 +1
TEMP = COF (L)
XT2 XeXT=YsYT
Y172 XeYT +YeXT
V = V + TEMP 2YT2
U= U + TeEMP*#XT2
Fl=1
UXzsUX+FI*XT+TEMP
UYsUY=-FI*YT*TEMP
XT = XT2
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70 YT = YT2
SUMSQ = UX*UX+UY*YY
IF(SUMSQ) 75,110, 75
75 DXa(V+UY-UtUX)/SUMSQ

X = X + DX
DY = - (U»rUY + VveyX)/5UMSQ
Y =Y + DY

78 IF(DABS(DY)+DABS(DX)~1,D-12) 100,80,80
80 ICT = ICT =1
IF(ICT~-500) 60,85,8°
85 IF(IFIT) 100,90,100
90 IF(IN-5) 50,95,95
9% 1ER = 3
RETURN
100 DO 105 L = 1,NXX
MT = KJ1 -L+1
TEMP = XCOF (MT)
XCOF(MT) = COF (L)
105 COF(L) = TEMP

1TEMP = N
N NX
NX = JTEMP

IFCIFIT) 120 , 55,1290
110 IFCIFIT) 115,50,115
115 X = XPR
Y = YPR
120 IFIT = 0
IF(Xx) 122,125,122
122 IF(DABS(Y/X)=~1,D=10) 135,125,125
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125

130

135

140

145

150
155

160

165

ALPHA = X+X
SUMSQ = X#X + YaY
N = N=-2
GO YO 140
X 0.0
N X NX -1
NXX = NXX -1
Y = 0.0
SUMSq = 0.0
ALPHA = X
N = N-1
COF(2) = COF(2) + A_PHA* COF(1)
K=
DO 150 L = 2.N
K=K
COF(L+1) = COF(L*1)Y+ALPHA»COF (L)
ROQOTI(N2) = Y
ROOTR(NZ2) = X
N2sN2+1
IF(SUMSQ)160,165,160
Y==Y
SUMSQ=a0,
GO TO 155
IF(N) 20.20,45
END
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SUBROUT INE

NDIMENSION CR(1),CI(1).DR(1)Y,DI(1),ER(1),E](1)

DIMENSION AR(1), Al(1),

ACR(1)ACI(1)

ROCHESTER APPLIED SCIENCE ASSJCIATES

100 ALLENS CREEK ROAD
ROCHESTER, N, Y,

THIS SUBROQUTINE
TO COMPUTE ER(I,JsK)

IS FOX THz COMPUTATION OF
AND EI(1,JdaK)

716 271~345)

ERC(I,J,K)
uSEQIO

S1C(AR,AI,CR,CI,ACR,ACI,DR,DI,ER,EI,LI,LJsLK,NF)

AND EIC(],J,K)

CALL SECT1C(AR,Al,CR,C1,CR,C1,DR,DI,ER,EI,LIsLJ,LK,NF)

OR THE CALCULATION J3F FR(I1,J,K)

AND FICI,J.K)

LK IS THE LENGTH OF <«

LK=3#NF -2
LK2NF = 2#NFe~1
LKNF = NF
LJsL.J+1
LJ3=LJ+1
LJi= LJ-1
DO 5 I=1,L1
DO 5 J= 1’L.J1
IJ = (LI*l=LJ+J)*LK
1J2 = (LIw]l-LJ+J)al€2NF
DO 45 K=1.,NF
AKs K+K=~2
I1JK=1J+K
TJKZ2 = [Jd2+K
ER(IJK) =
EICIJKY = AK«ACR([JA2)+D1(14%X2)
ER(IJK)==AK*ACI (I JK)+DR(IJK)
EICIJK) = AK«ACR(]1JX)Y+DI(]IJK)
CONSTR=0
CONSTI=0
DO 55 L=1,3
L (LI*I=LJ+L)* K2NF
JL (LIvL=LJ+J)*{ KNF
JL s(LI*L=LJ+J)*LK

IL = (LIwDl-LJ+L)wl<
CONST1=0
CONST7=0
NFK=sNF =K
[F(NFK) 3,3,4
4 D0 15 N = 1,NFK
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20

a5

55

45

TLNI=IL+N+1

LJKN=JL+K+N

CONST1=CONST1+CRUILNL1) #AR(LJAN) +ClCILNL1)Y#AT(LJKN)
CONST7= CRCILN1) e AICLJKNY « CIC(ILNL)*AR(LJKN) + CONST?
CONTINUE

CONST2=0,0

CONST8=0

NF1sNF~1

DO 20 N= 1, Nf1

TLKNE[L+K+N

LJNi=JL+N+1 .

CONST2=CR(ILKN) * AR(LJNL) + CICILKN)# AI(LJUN1) + CONST2
CONSTB8 = CONST8 = CRCILAN)® AJ(LJINL) + Cl(ILKN)I*AR(LJUN1)
CONTINUE

CONST3 =0

CONST9 =0

DO 25 N=1,K

ILKIN = JL+K+1=N

LJUN= JL+N

CONST3 = CONST3 + CRCOILKIN) * AR(CLWJN) < CICILKIN) « AI(LJN)
CONST9= CONSTY9 + CR(OILKIN) e AI(LJN) + CI(ILKIN) * AR(LJN)

CONTINUE

CONSTR=CONSTR+ CONSTL1+CONST2+CONST3
CONSTI=CONST7 + CONST8 + CONST9 +CONSTI
CONTINUE

ER(IJK) = ER(IJK)= CONSTR

EICIJKYs BI(IJK)~ CONSTI]

CONTINUE

NF1= NF+1

NF21 = 2#NF~1

DO 60 K = NF1,NF21
I1JK=1J+K

I1JK2 = [J2+K

AK 2 K + K ~2
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70
66

8n

65

60

EICIJK) = AKw» ACR(IJK2)+DI(1JK2)
ER(IJK) = =AK«ACI(1UK2) + DR(IJK2)
EICIJK) = AK*ACR(IJK)+DI(]JUK)
ER(IJK) = =AK*ACI(IJK)+DR(IJX)
CONSTR=0

CONSTI=0

DO 65 L=1,3

NN=2#NF-1-K

IL = (LI*l=LJeL )WL K2NF
JL = (LIelL=LJ+Jd)*KNF
IL=(LIv]mLJeL) *LK
JL 3 (LIeL=LJ+J)*LK
CONST4 =0.0
CONST10=0.0
IF(NN)66,66,67
DO 70 N = 1,NN
JILKN=TL+K*N
LJUNL = JL+Nei
CONSTL10=~CRCOILKN)» AICLJUNLY +» CICJLKN) » AR(LJN1) « CONST10
CONST4 = CR(ILKN) » AR(LUNL) + CICILKN) ® AJ(LJN1) e CONST4
CONTINUE
CONSTS5=0,0
CONST11 = 0

N0 80 N=1,NF

TLKAN=IL+K+1=N

LJIN=JL+N

CONST11 = CONST11 + CR(ILKAN)*AT(LJIN)+CICILKIN) «ARCLUN)
CONSTS5=CONSTS+CROTLKIN) *AR(LIN)«CI(ILKIN)*AT(LJN)
CONTINUE

CONSTR=CONSTR+CONST4+CONSTS
CONSTI=CONSTI+CONST10+ CONST11
CONTINUE

ER(IJK) = ERCIJK) - CONSTR
EICIJK) = EICIJK) = CONST!
CONTINUE
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NF2 = 2«NF
NF32= 3«NF=-2
DO 100 K=NF2,NF32

IJK=1J+K
1JK2 = [J2+K
CONSTR = 0
CONSTI=0

DO 105 L=1,3
c TLbs C(leLI-LJ+L) «lK
IL = (I«LI=LJ+L)*L K2NF
c JU s(LIxb-LJ*eJ)slK
JL = (LI*L=LJ*J)*[KNF
CONST6= 0
CONST12 = 0
NN = K=2=NF o 2
IF(NF- NN) 101, 102, 102

102 DO 110 N = NN , NF
ILKIN= TL+K+1-N
LJN=JL+N
CONST6 = CR(ILKIN) o AR(LJUN) = CICILKiN) o AI(LUN)
CONST12 = CROILKIN) o AICLJUN) + CICILKiIN) o AR(C LJUN)
110 CONTINUE

101 CONSTR= CONSTR + CONSTE
CONSTI = CONST] + CONSTL2

105 CONTINUE
ER(IJK)= = CONSTR
EIC(IJK) = = CONST]

100 CONTINUE

c
5 CONTINUE
C
LJ=LJ-1
RETURN
END
*END
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s DECK,S4

SUBROUTINE S4(CC+BIGA,A,B,CLXRsXI,U,51,E,NO,K,PI,DYR,DYI,YR,Y{)
DIMENSION XR(13)a.X1(13)

DIMENSTION A(1),B0(1),C(1),CC(1)«YR(L)2YI(1)H»DYRCL),DYI (1), X(1),E(L)
DIMENSION BIGA(1),U(1),51(1)

WRITE(6,1445)

1445 FORMAT( * ENTRY INTD 54x)

SETTING UP OF THE LINEAR ALGEARAIC EQUATIONS 9TH AND 12TH ORDER SYSTEMS

PROGRAMMED FOR pR, P, CRIM]
ROCHESTER APPLIEU SCIENCE
ROCHESTER NEW YQRK
AC716 271 3450
PROGRAM FOR SETTING UP THE SYSTEMS OF SIMULTANEOUS EQUATIONS
FOR THE 9TH AND 12T+ ORDER SYSTEMS
INPUT PARAMETERS
A(1) IS DUMMY STORAGE
R(1) IS DUMMY STORAGE
C(1) IS DUMMY STORAGE
MAXIMUM NECESSARY LEVGTH OF A,B.C IS 12
DELTY IS THE PARAMTER TJ BE yYSED ]F THE DENOMINATOR BECOMES SvALL

CC¢1) IS IHE RETURNED SET FO SIMULTANEOUS EQUATION MATRICES
C(M,N) IS OF ORDER C(9,9) OR C5(12,12) THEREFORE C(81) OR G(144)
Y ARE THE INPUT VALJES JOF THE DETERMINANT

ny ARE THg DELTA Y

X¢(1) IS DuUMMY STORAZE MAX IS X(¢12)

E(1) IS ETA(J) MAX IS ETA(12)

U (1) 1S DUMMY STORAGE MAX DIMENSION IS y(12)

A PROGRAM FOR SETTING UP THE SIMULTANEQUS EQUATIONS FOR 9TH AND 12TH
NO41 = NQO-~1

NKsK*2

DO 5 N=2,NK,2

A(N)=PI«SiI{N)

B(N) = PI*E(N)

S5 CONTINUE
N1 = NK+1
NKi = NK=1

DO 10 N=N1,NO
C(NIEPI#S](N)

10 CONTINUE

DO 25 MM=1,NK1,2
XR(MM)==P*YR(MM)
X](MM)=-Pl®Y](MM)
XXRsXR(MM)
XX1=X](MM)

DO 15 N=1,NK1 ,2
NN=N+1
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BNN=B(NN)Y+XX]
XTIR=B(NN)~-XXI
AAzA(NN)
XAA=XXR+AA
EXAASEXP(XAA)
EMXAA=EXP(=XAA)
COSHY=(EXAA+EMXAA)*,5
UCN)=((SINCBNN) Z/CCOSHY -COS(3NN))II+(SIN(XIB)Y/(COSHY~-COS(X]B))))*,5
15 CONTINUE
D020 N = Z2,NK,2
AAZA(N)
XXAASXXR+AA
BN=B(N)
XIBN=XX[+BN
BNXI=8N-XX1
EXXAA=EXP(XXAA)
EMXXAAZEXP (-XXAA)
SINHY=(EXXAA=EMXXAA)*,.5
COSHY=(EXXAA+EMXXAA)*,5
7022 FORMAI(*» NOP = » [5)
UCN)=((SINHY/(COSHY=~COS(XIBN)))+(SINHY/(COSHY~-COS(BNXI))))w,5
20 CONTINUE
DO 21 N =  QN1,NOQ
XXCN=XXR+C(N)
EXCN=EXP(XXCN)
EMXCN=EXP(=XXCN)
SINHY=(EXUN~EMXCN)*,5
COSHY=(EXUN+EMXCN)w,5
UCN) = SINHY/(COSHY~-COS{XX1))
21 CONTINUE
DO 33 N=L1a.NO
MN=(MM=1)*NO#*N
30 CC(MN) = U(N)
25 CONTINUE
DO 125 MM=2,NK,Z2
XXR=ePI*YR(MM)
XX1==PI«YI1(MM)
DO 130 N=1,NK1,?2
XXRA=XXR+A(N+1)
EXXRA=ZEXP (XXRA)
EMXXRA=EXP(-XXRA)
SINHY=(EXXRAsEMXXRA)#* .5
COSHY=(EXXRA+:MXXRA)*,5
BNX1=zB( N+1)eXX]
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XIBNSB(N+1)+XX]
U(N)Z(SINHY/(COSHY=COS(BNX]I))~(SINHY/ (COSHY~-COS(XIBN))))* 5§
130 CONTINUE
DO 135 N=2,NK,2
XXAN=XXR*A(N)
BNXI=B(N)-XX]
XIBN=B(N)+XX]
COSHY=(EXP{XXAN)+EXP(=XXAN))*,5
UCN)=(=SIN(BNXI)/(CISHY=COS(BNX]))+*SIN(XIBN)/(COSHY~ COS(XIBN)))* 5
135 CONTINUE
DO 140 N=N1,NO,1
XRCNEXXR*C{(N)
COSHY=(EXP{XRCN)*EXP(=-XRCN))»,5
U(N)ﬂSlN(XXI)/(COSHY-COS(XXI))
140 CONTINUE
DO 145 N£1,NO
MNz (MMw1)*NO#N
145 CC(MN)=U(N)
125 CONTINUE
DO 150 MM=N1,NO1
Mz (MM-1)%NQ
XXRs ~PI+YR(MM)
DO 155 N=1,NK1,2
XRANZXXR+*A(N+1)
COSHY=(EXP(XRAN)+*EXP(~=XRAN))* .5
MN=M«+N
BN1= B(N+1)
CC(MN)=SIN(BNL)/(COSHY=COS(BN1))
155 CONTINUE
DO 160 N=Z)NK,2
MN=M+N
XRANz=XXR*A(N)
EXRAN=EXP(XRAN)
EMXRANZEXP{=-XRAN)
SINHY=(EXRANeEMXRAN) *,5
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COSHY=(EXRAN+EMXRAN)* 5

160 CC(MN)=SINHY/(COSHY-COS(B(N)))
DO 165 N=N1,NO
MN=aM+N
XRCNs (XXR+C(N))«,5
EXRN=EXP (XRCN)
EMXRN=EXP(=XRCN)
SINHY=EXRN=EMXRN
COSHY=EXRN+*EMXRN
CC(MN)= COSHY/SINHY

165 CONTINUE

150 CONTINUE
DO 40 N = 1,NK1,2
MN=NO* (NO-1)+N
MN1 = MN+1
CC(MN1) = 1.
CC(MN) = U,0

40 CONTINUE
N0 70 N=NK ,NO
MNSNO+*NQL+N
CC{(MN)=1,U

70 CONTINUE
no 50 M=1!NK112
BIGA(M)=DYR(M)=1,

50 BIGA(M#1)==DY]l(M+1)
DO 60 M=N1,NO1

60 BIGA(M)=DYR(M)~1,
BIGA(NO)=U
RETURN
END

*END

M



¢

C

T

1005

2

8
L

SUBROUTINE S2A(QUT,FFR,FF],GR,G1,ALPH,BET,BET,GAMM,DELT,PJR,PLI,

1 IN,CR,CI,OR,DI»YR,YIsNsND,LI2LJ,NFIM,NP,NOLEPS,DELTAX)

0 GET THE REAL AND IMAGINARY 2ART OF A COMPLEX DETERMINANT
SUBROUTINE SECT2B(OJYT,FFR,FF],GR,GI,ALPH,BET,GAMM,DELT,PIR,RPI],
DIMENSION CRC1), Cl(1)DR(1)>DBI(1),ER(L)EI(L)

DIMENSION FFR(1), FFI(1)

DIMENSION FR(1),FI(1),GR(1),G1(1)

ALF(FFRIJGRIJLFFIT1,G11J,AB) s(FFRI*GRIJ +FFI11+GI]1J)*AS
BETF(FFRI,GI1J,FFI1,GRIJ,AR)S(FFRI*GIIJ-FF1I*GRIJ)*AB
FRF(YR,Y!,R,CRMM1,D3IMM)=YR*#3-3,#*YR« ((2 ,*R+Y[)*%2)+YR*CRMM1L+DRMM
FIF(YR,YI,R,CRMM1) =(2,*R+Y])*(J,*YR*YR~-((2«R+Y][)*+2)+CRMM] )
GRF(YR,Y1,S,CRM,CIM,DRM)=YR*CRMe{(2,#S+Y[)*CIM+DRM
GIF(YR,YI,S,CRM,CIM,DI[M)=YR*CIM+(2,*S+Y])«CRM+DIM
FHICYRsY!,R,CRMML1)=(2, #R+Y] )% (4,%YR*(YR*YR=((2,2R+Y])##2))+ZAMML)
FHR(YR,YI,R,CRMM1,DIMML)=((YR*YR=(2,*R+Y])**2)wx2)+YR*CRMM1=
1(4,%R*YR+2,*YR*Y])+#2 +DRMM1

NIN=5

NP=6

ORDER=NQ

IF(ORDER=~9,)1,2,1

IF(ORDER'120)433:4‘

FORMAT(41HL1IN DELY NEITHER A 9TH OR 12TH ORDER CALL)

NQR=2

LKs3*NF-2

GO TQ 8

NOR=1

LK = 2«NF-1

LJ1 =3*(2«N)p+1)

J1 IS USED FOR 2 DIMENSION INDICES

LM=L]

LN=LJ

LJdskJ+1

LK33 = LI«LJxLK
MDz=ND

MZ=0
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23

66

67

89

MMIS(LI#M~LJeM) 2L K+1

CRMM1 = CR(MM1)

DRMM1 = DR(MM1)

DO 89 MR=MD,ND

RsMR

] = Xw(MR+ND)+M
NIRM=3+(NO~MR)+M

GO YO (66,67),NaR
D0 9 TH ORDER EQUATIQJNS
FFII=FIF(YR,YL,»RaCRYML)
FFRI=FRF(YR,YI,R,CRYML,DRMM1)
ALPH(TI Y=L, /(FFRI®FFRI+FFITFF]1
FRN= FRF(YR,=-Y]l,R,C3IMM1,DRMML)
FINSFIF(YR,~YI,R,CR|M1)
BET(NIRM)=1./(FRN&«FIN+FIN»xFI\)
GAMMI(NIRM) =FRN

DELT(NIRM)ISFIN

FFI(I)=FFI]

FFR(1)=FFRI

GO TO 89

FFRI=FHR(YR,YI+R,CRMM1,DRMML

FFII=FHIC(YR,YI,RsCRYML)
FFICI)=FFII

FFR(I1)=FFRI

ALPH(I) =1 . /{FFI1*FFII+FFRI*FFRI)
FRAN=FHR(YR,~Y[,R,CRYM1, DRYM1)
FINSFHI(YR,~YI,R»CRYM1)
RETI(NIRMI=1,./(FRN«FIN*F IN*F[\)
GAMM(NIRM)=FRN

NELT(NIRM)=FIN

CONTINUE

DO 5 MS=MD,ND

S=MS

82 = S+§

MSND = ND-MS

MSND3 = MSND+MSND+MSND
NDMS=ND+MS

NDMS3 = NDMS+NDMS+NDMS
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DO 5 MR = MS,ND

R=MR

NDMKk = ND-MR

NDMR3 = NDMR+NDMR+NDMR

MRND= MR+ND

MRND3 = MRND+MRND+M3IIND

MRMS1 = MR=MS+1

DO S5 M=1.LM

I 32 MRND3+M

1 =2 I«(MR+ND)+M

THE I INDEX REQUIRES ONLY MR AND M
INDICES ARE IN THREE DIMENSIOQNS

NIRMe 3x(-MR+ND)+M

NIRM = NDMR3+M

BA=BET(NIRM)

FRNEGIJ=GAMM(NIRM)

FINEGIJ=DELT(NIRM)

NIRMi=(NIRM-1)+| Ji

IRMs 3% (MR+*ND)+M

FFRISFFR(I)

FFII = FFI(])

AB=ALPH(T)

IRM = 1

IRM1 = (IRM-=-1)*LJ1
DD 5 N=1,LN
MN=(LI*M=LJ+N)#*[ K

MNRS1=MN+MR~=MS+1

MNRS1= MN+MRMS1

NJSN = MSND3+N

NJSN3 3x(-MS+ND)+N
NEGIJ=(NIRM=-1)*_J1 «NJSN
NEGIJ = NIRM1+NJSN

JSN = NDMS3+N

JSN=z 3Z« (MS+ND)+N
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6117

6177
617
2112

2111

3111

8887
9999

1J= IRM1+JSN

IJ2(IRM=1)%LJ1l +JSN

IF(MRMS1=LK) 6177,6177,6117

GR(IJ) - 00

GI(IJ) =0

GR(NEG[J)=0,

GI(NEGlJ)=0,

GO YO 5

IF(M=N)2111,617,2111

IF(MR-MS) 2111,2112,2111

GR(IJ) = 1,

Gl(lJ) = 0

GRINEGIJ) =1,

GI(NEGIJ)=0,

GO TO 5

CRMNRS= CR(MNRS1)

CIMNRS= CI(MNRS1)

DRMNRS= DR(MNRS1)

DIMNRS= DI (MNRS1)
GRIJ=GRF(YR,YI,SsCRYNRS,CIMNIS,DRMNRS)
GITJ=GIF(YR,Y1,Ss»CRYNRS,CIMNRS,DIMNRS)
TEMPA =(FFRI®GRIJ + FFLI*GI1J)*AB

GIClJ)= (FFRI*GIIJ=FFII*GRIJ)*AB

GR(]J) = TEMPA

GRNEGIJ=GRF (YR,-Y1,5,CRMNRS, CIMNRS, DRMNRS)
GINEGIJ=GIF(YR,~-Y1,5,CRYNRS, CIMNRS,DIMNRS)
GI(NEGIJ)==-BETF (FRNSGIJ,GINE3IJ,FINEGIJ,GRNEGIJ,BA)
GR(NEGIJ)=ALF(FRNEGIJ,GINEGIJ,FINEGIJ,GINEG]J,BA)
CONTINUE

K=K

K=K

M26«ND+3

M1 = M=-1

DO 200 KM = 1,M1
NST = 3

M2J = KM
MKM=M~KM
M2=MKM+1

M21M = (M2=1)wM
MM=(M2~1) *MeM2
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BRMM= GR(MM)
GIMMs GI(MM)
D 2 GRMMeGRMM + GIvMAGIMM
Di= 1./7D
IF(D=EPS)71,72,72
72 MONEY=0
NG 2200 1s1,MKM
[4M= (1-1)+*M
IM = [1MeMZ
IM=({l-1)«M+M2
GRIM = GR{IM)
G1IM = gl(IM)
GAM & GRIM*GRMM + QGIMMeGIIM
GAzx DI~GAM
DE=DI*(G] IMYGRMM=GRIM*GIMM)
FFI(1y=GAM/D
FER(1) = (GIIM#GRMM =+ GRIM«GIMM)/D
DE= FFR(I)
GAa = FFI(L)
Do 200 J = 1, MKM
pg2200 J = 1, MKM
1Jd = [TiM+J
G [ds(l-1)wMeJ
MJz M2iM+J
C MJz(M2-1)#M+d
BE = Gl{(MJ)
AL 3 GR(MJ)
GR{1J} = GR(IJ)-GAwAL+DE*BE
Gl1(1J) = GI(1Jd)Y = GA#BE~DE=AL
2200 CONTINUE
200 CONTINUE

GO n

e REPLACE BETACIY)
c
PIIN = GI(1)
PIRN = GR(1)
M1 = M-1
C
DO 103 K = 2.M1

no



KKe(K-1)vM+K
GRKK s GR(KK)
GIKK= GI(KK)
PIR = GRKK*PIRN-GIKK*P]IN
PI1T = PIIN*GRKK + GIKK*RPIRN
PIRN=PIR

103 PIINSPI]

LJ=Ld-1

RETURN

UNLIKELY EVENT A(MM) xa?2 + BIMM)+=2 7O SMALL
71 NA=M=KM

DO 73 LL=1,NA
LUVM=(LL=-1)*Me )
IF(GR(LUVM) =DELTAX) 91,91,92
91 IF(GI(LUVM)-DELTAX) 733,733,92
73 CONTINUE

733 WRITE(NP,1002)DELTAX,D,¥2J
1002 FORMAT(54H #++*xUNABLE TO FIND AN ALPHA OR BETA LARGER THAN DELTA /

1 21H IN SUBROUTINE DELY /
2 10H DELTAX= » E20.8,17H OLD VALUE USED= E20.,8,10H COLUMN
1 15

IF(D) 72,999,72
92 DO 77 J=z1,NA

NAJS(NA=-1)*M+)

KJds(LL=1)%*M+J

GR(NAJ)Y = GR(NAJ) + GR(KJ))

GI(NAJ) = GI(NAJ) + GI(KJ)

NANA = (NA=1)«M + NA

D = GR(NANA)«GR(NANA)+G](NANA)*GI(NANA)
77 CONTINUE

4007 FORMAT(21H ADJUSTMENT ON COLUMN 1)
WRITE(NP,4007) M
G0 TO 72
999 WRITE(NP,1009)
1009 FORMAT(1HOSOHNECESSARY TO ABJORT DUE TO SINGULARITY )
STOP
DELTAX = 0,0
Ld=LJ-1
4 WRITE(NP,1005)
RETURN
END
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51

HUN

~N O

17
18

19
54

55

SUBROUTINE UP(PCsND,NSTART,N?)

DIMENSION PC(18)

ERSIL = ,075

EP2 s 2,%EPSIL

NDi = ND-~1

ND2 = ND=2

PA = PC(ND1)-PC(ND2)
PD = PC(ND)Y-PC(ND1)
PA65=PA

PA76=PD

PAY1 = ABS(PA)
PD1=ABS(PD)

IF(PD1~ PA1)8,55,55

K=K

IF(PA) 1,2,2

PAs=1.

GO TO 3

PA=1,

IF(PD) 4,5.,5

PD=~1,

GO TO 6

PD=1,

IF(PA+PD)7.,55,7
PDzPD1/PC(ND1)

PAzPAL/PC(ND2)

PA=ABS(PA)

PD=ABS(PD)
IF(PA-EPSIL) 17,17,55
IF(PD-EPSIL) 18,18,55
K=K

RAT}O=PA76/PA6S
IF(RATI0D)55,55,19
1F(RATIO=.8)54,55,55

CALL PRE(ND,PC,NP)

NSTART = 0

RETURN

CONTINUE

NSTART = 1

RETURN

END

SUBROUTINE TO ESTABLISH CRITER]ION FOR CONVERGENCE
THE LAST THREE DETERMINANTS MUST BE MONOTONIC,
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SUBROUTINE PRE(ND,PC,NP)
DIMENSION PC(18)

c PREDICT THE CONVERGEED VALUES BASED ON THE LAST THREE
C NETERMINANTS

REAL K2K1,K2K3,MU,K1,K2,K3

DELTA=,00004%

C1 = PC(ND-2)
€2 = PC(ND=1)
C3 = PC(ND)
K1sND~2
K2 s ND-1
K3 = ND
K2K3= K2/K3
K2K1=K2/K1
¢ WRITTEN FOR THE INFINITE DETERMINANT SUBROUTINE WITH ASYMPTOTIC
LIMITS,
PC(2) = 0
MU = (C1=C2)/(C2~C3)
P=,00001
FP = MU*(1s+K2K3I*#P)=K2A1lxwP+]
A =z ABS(FP)I/FP
c THIS GETS NEGATIVE OR POSITIVE ONE

0

AM = 1
AP = 1
M2D=1
M100=100
M1 = 1
13 K=K
DO 3 M = M20,M100,M1
AP = K2K1rAP
AM = K2K3+AM
FP = MU-MU*AM -AP+1
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R = ABS(FPI/FP
IF(A+B) 1,10,1
ZERD IS CHANG E OF SI3N
1 CONTINUE

PC(2) = 3
RETURN
11 K=K
10 M50 = M+9%0
18 PN=z=M

19 FA = MUn(1,~K2K3*aPN)=K2Ki#w2N+1
DO 15 L = 1,50
PNK2K3 = K2K3w#PN
PNK2K1z KZ2Kiw=PN
PN1 = PN +(MU#(1,«aPNK2K3)-PNC2K1 +1)/ (PNK2K1*ALOG(K2K1)+MU»P\NK2K3w
1ALOG(K2K3))
PNiFP=(PNi-PN)/PN1
PN = PN1
B = MU*(1.-K2K3*##PN1)-K2K1#»x2N1 +1
PC(3$7)=PN1
IF(ABS(PN1FP)~-DELTA)16,16,15
15 FA = B
14 PC(2)=2
RETURN
16 PC(L) =
PC(2) =
RETURN
END

(C2*K2K1#*PNi«C1)/( K2K1wsPNi-1, )
0
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SUBROUTINE SSA(OUT:AK:IV K,MORDER,F.PB,PA,PC, IERR)

INTEGER RZ21

INTEGER R1

INTEGER R,R2,R22

DIMENSION BIGA(13,13),A(13,13), B(13 13),C(13,13)

DIMENSION BIGAP(13,13,6),8P(13,13,6),CP(13,13,6),AP(13,13,6)
DIMENSION F(13),AC(13),AK(13)

DIMENSION AR(13)+,AS(13),P(13),Q(13),PC(13),PA(13),PB(13)

THE POLYNQMIAL COEFFIZIENTS 0OF THE HIGHER ORDER SYSTEMS.
THE 9 THE AND 12TH ORDER SYSTEMS HAVE ASSOCIATED
WITH THEM CHARACTERISTIC POLYNOMIALS OF DEGREE 9 AND 12
RESPECTIVELY, THE COEFFJCIENTS OF THESE POLYNOMIALS ARE NEEDER TO
DEFINE THE SHARACTERISTIC EQJATIONS OF THE SYSTEMS8 AND
ARE COMPUIED AS FOLLOWS,,.
THE COEFFICIENTS DESIRIED ARE K1,,,.K9

NP=6

DO 45 M=1,K

M2z 2%M

M21s3M2-1

PBMZ2 = PB(M2)

COSB2M = COS(PBM2)

PAM2 PA(M2)

EAZM EXP(-PAM2)

F2M = F(M2)

F2A2M = EXP(=2,%PAM2)

F2M1=F (M21)

AR(M) = 2,*EAZM=+(F2v1«SIN(PBY2)+F2M+«CQSB2M)
AS(M) = =2,«F2MxE2A2M

P(M) = -2,*EA2M%C0S32M4

Q(M) = E2AZ2M
WRITE(NP,2000)P (M), 3(M),AR(M),AS(M)
45 CONTINUE

KizsK#1

DO 10 M=K1,MORDER
M2 = 2+«M

M21 = M2-1

PCM2 = =PC(M2)
EC2M = EXP(PCM2)

PCM21 =-PC{M21)
EC2M1 = EXP(PCM21)
F2M = F (M2}
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FeM1i = F(M21)
AR(M) = 2,%*(F2M1+EC2M1+F2MEC2M)
CC9 = PCM21+PCM2
¢ CC9 = -PCM21-PCM2
ECC9 = EXP(CCY)
AS(M) = =2, +ECCO*(F2M1+F2M)
P(M) = ~(EC2M1+EC2M)
Q¢M) = ECC9
WRITE(NP,20000)M
20000 FORMAT(5H M = ,15/)
WRITE(NP,2000)P(M),3(M) AR(M),AS(M)
2000 FORMAT(1HO,/15X,4HP (M), 15X, 45Q(M) 15X, 4HR (M) »15X+»4HS(M),/
1 /3X,4E19.6)
10 CONTINUE

c NOW WE DEFINE A SUCCESSION DOF TRIANGULAR ARRAYS,
c A(l,2R), vesr 12 1920040402R R= 1,2,3,4
C ACCORDING TO A1,2) = P(1)
c A(2,2) = Q(1)
c A(l,2R) = BISA(I,R),*Q(RY + B(I,R)«P(R) + C(l,R)
c WHERE BIGA(I,R) = A(1-2,2R-2)
c B(I,R)= A(]=1,2R-2)
c C(I,R) = A(],23~-2)
c WHILE IN COMPUTATION TAKE,..
c A(l1,2R)Y = 0 FOR [ NEGATIVE
C AND TAKE A(D,2R) =1
C IN ORDER TO HAVE A(Q0,2R) Wt S+HALL ADD 1 TO ALL I INDICES Tp AVQID ZERD
NORDER=MORDER*2 +1
NL1= NORDER +1
DO 25 I = 1,NL1
no 25 R = 1,NL1
25 A(1,R) = 0,
C ADJUSTED TO AVOID ZERD INDICES As1:2) AND A(2,2)
A(2,2) = Q(1)
A(1,2) = P(L)
R=MORDER
MR2 = 2.+»MORDER
MR21= MRZ+1
PO 5 I = 1,MR2
Kl=]
KI1 = Ki~1
Kl2= KI-2
DO % R = 1,MORDER
R2 = 2+R
Cc R22 =z 2xR-2+1
c ADJUSTED 70O AVOID ZZRO INDICES
R22=R2-1

1F(KI2) 1,2,3
1 A(K]Z2,R22) = 0
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GO 10 7

2 A(K]2,R22) = 1,

7 IF(KI1) 4,6,3

4 A(KI1,R22) = 0
GO 70 3

6 A(KI1,R22) = 1,
3 BIGA(I,R) = A(K]l2,R22)
B(l,R) = A(KI1,R22)
C(l,R) = A(K],R22)
R21 = R2+1
A(K],R21) = BIGA(],R)*Q(R) + B(],R)«P(R) + C(I.R)
5 CONTINUE
A(3,3)
A(2,3)
A(1,3)
N0 21 R = 4,R2,2
R1 = R+1
Do 21 I = 1,R2
A(lI,R) = A(C],R1)
21 A(I,R1Y) =0
WRITE(NP,300)C(((I,J,A(]l,Jd)),]=1,13),J=21,13)
300 FORMAT(1X,2HA(,15,14,15,2H)=E20,6)

o 0
o0

"
oo o

Q

c NEXT, DEFINE THE SUCCESSION OF MODIFIED TRAINGULAR ARRAYS
c APC],2R,M) I= 1,2,,+452R R=1,2,.¢,MORDER~1 M = 1,2,...MIRDER
c NOTE THE SUCCESSION HALTS AT R=MORDER-1
c THE ARRAYS OF AP ARE FORMED FOR A GIVEN M EXACTLY AS THE A(1,R)
C FXCEPT BEFORE STARTING REPLACE THE VALUE OF P(M) BY P(4) AND Q(M) BY Q(4)
NORDER=13
N0 30 I = 1, NORDER
DO 30 R = 1,NORDER
DO 30 M = 1,MORDER

30 AP(l,R,M) = 0,0
DO 58 M = 1,MORDER
TMPP=P (M)
TMPO=Q(M)
Q(M)=Q(MORDER)
P(M) = P(MORDER)
AP(2,2,M) = Q(1)
AP(1,2,M) = P(1)
ML1 = MORDER -1
MR2 = 2#MORDER

CEXCEPT BEFORE STARTING R=PLACE P(M) BY P(MORDER) AND SAME FOR Q(M)

MR21 = MRZ+*1
DO 50 1 = 1,MR2
Ki=Il
KltskKI~1
Kl2sKI=2
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) ADJUSTED 70 AVOID ZERD INDICES
DO 50 R = 1,ML1
R2 & 2#R
R22 = R2-1
IF(KlI2) 51,%52,53
51 AP(KI2,R22,M) = O
GO TO 57
52 AP(KI2,R22,M) = 1
57 1F(KI1) 54,56,53
54 AP(KI1,R22,M) = 0
GO 70 53
56 AP(KI1,R22,M) = 1,
53 RIGAP(I;RJM) = AP(KIZ:RZZJM)

BR(I,R,M) = AP(KI1,22,4)
CP(I,R.M) = AP( KI[,R22,M)
R21 = R2+1

AP(1,R21sM) = BIGAP(I,R,M)«Q(R)+ BP(I,R,M)*P(R) + CP(I,R,M)
50 CONTINUE

Q(M) = TMPQ

P(M) = TMPP
58 CONTINUE

c NOW BACK SHIFT
Rz MORDER-1
R2 = 2+«R
DO 121 1 = 1,NORDER
DO 121 M=1,MORDER
DO 121 R = 4,R2,2
R1 = R=+1

AP(l,R,M) = AP(],R1,M)
121 APCI,R1,M) = O
po 122 M=1,MORDER
AP(1,3,M)=0
AP(2,3,M)=0
122 CONTINUE
400 FORMAT(2X,3HAP(,15,1H,15,1H,15,3H)= E20.6)

c IT IS THEN POSSIBLE TJ COMPUTE THE COEFFICIENTS C(S) S=1,2,.,¥y.,8
c ACCORDING TO ..,
CONST1 = 0

IF(MORDER-4) 193,200,201
201 1F(MORDER-6)199,202,199
200 po 100 M = 1,MORDER
100 CONST1=z CONST1+AR(M)
AC(1) = A(1,8) + CONST1
CONST1 = 0
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DO 110 M = 1,4
110 CONST1 = CONSTL1 + AR(M) * AP(1,6,M) * AS(M)
AC{(2) = A(2,8) + CONSTH
DO 1200 MS=3,7
CONSTL = 0
DO 120 M=1.,4
MS1 = MS-1
MS2 B MS=~2
CONST1 = CONSTL + AR(M)WAP(MS1,6,M)+AS(M)I*AP(MS2,6,M)
120 CONTINUE
AC(MS) = A(MS,8) + CONST1
1200 CONTINUE .
WRITE(NP,500)CC1,ACCI)),1=1,8)
500 FORMAT(1KHO, 1X,3HAC(,15, 3H)= ,E20,6)
CONST1 = 0
DO 130 M = 1,4
CONST1 = CONST1 + AS(M)®KAP(6E,6»M)
130 CONTINUE
AC(8) = A(8,8) + CONSTY
AK1 = EXP(=PC(9))
AKD = 2,»F (9)*AK1
AK{1) = AC(1) =AK1+AKO
DO 150 MS= 2,8
MS1 = MS=1
AK(MS) =AC(MS) ~-AK1«AC(MS1) +» AKO=A(MS1.8)
150 CONTINUE
AK(9) = AKO » A(8,8) - AK1 » AC(8)
550 FORMAT(3X,//,3X4HAKO=,E20,6,5Xs4HAK1LZ,E20.6/)
650 FORMAT(1H ,1X,/,2%x,4HAK( ,15,3H)=s E20,6)
WRITE(NP,G650)((1,AK(1))s121,9)

IERR=0
RETURN
202 CONSTL = U
DO 205 M=1,MORDER
CONST1 = CONST1 + AI(M)

205 CONTINUE
AK(1) = A(l,12) + CONST}
CONST1 = 1
DO 210 M = 1, MORDER )
CONST1 = CONST1 + AR(M)*A2(1,10,M)+AS(M)
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210 CONTINUE
AK(2) = A(2,12) + CONST1
DO 215 MS=3,11

MS1 = MS~-1
M§2 = M§-2
CONST1 = 0

DO 212 M= 1,MORDER

CONST1 = CONST1 + AR(M)®AP(MS1,10,M)+AS(M)*AP(MS2,10,M)
212 CONTINUE

AK(MS) = A(MS,12) + CONST1
215 CONTINUE

CONSTL = 0

DO 220 M=1,MORDER

CONSTL = CONSTL + AS(M) » AP(10,10.M)
220 CONTINUE

AK(12) = A(12,12) + CONST1

NRITE(NP;650)((IaAK(I)).I=1;12)

IERR= O

RETURN
199 JERR=MORDER

RETURN

END
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SUBROUTINE SIMUQ(A,N,Y)
DIMENSION A(1),Y(1),1CHG(15),SV(15)
c SUBROUTINE FOR SOLVING SIMULTANEOUS EQUATIONS USING KROUTS METHOD
DO 1000 I=1,N
IT = (I-1)wN+]

SVelY = ACLD)
c svily=acl, )
TF(SV(I1))5,46,5
5 Y(hi=y(I)/Sv()
DO 1000 J=1,N

1Jd = (I=1)#N+,)
ACTJ)Y = ACLJY/ZSVID)
1000 CONTINUE
C1000 A(TI,J)=ACLl,J)/SV(])
DO 101 K=1,N
KK = (K~1)#*N+K
() AMX=ABS(A(K,K))
AMX=ABS (A(KK))
IMX=K
DO 15 1=K,N
IK = (I -1)*N+K
IF(ABS(ACIK))~AMX) 15,15,14
IF (ABS(A(I,K))-AMX) 15,15,14
14 AMX=ABS(A(I,K))
14 AMX = ABS(A(IK) )
IMX=]
15 CONTINUE
IF(AMX)27,46,27
46 N=-N
RETURN
27 IF(IMX~K)B,s9.,8
8 DO 22 J=1i,N
KJ 2 (K-1)*N+J
C TEMP=A(K,J)
TEMP=A(KJ)
IMXJ =(IMX=1)=N+J
A(KJ)Y = A(IMXD)
c AlK,J)sSACIMX,J)

Qo
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[ ]

22
22

10
10

17
18

18
45

44

26

ACIMX,J)=sTEMP

A(IMXJ )=TEMP
ICHG(K)=]IMX

TEMP=Y(K)

Y(K)= Y(IMX)

Y{IMX)= TEMP

GO TO 10

ICHG(K) =K
A(K,K)=1,/A(K,K)

A(KK) = 1./7A(KK)

DO 33 J=1:N

1IF (J=-K) 6,33,6

KJ & (K-1)*N+J

A(KJ) = A(KJ)I®A(KK)
A(KyJ)=(A(K,J))*(A(K,K))
CONTINUE

Y{(K) = Y(K)+A(KK)

Y{K) = Y(K)»A(K,K)

DO 44 I1=1,N

IK = (]-1)*N+K

DO 4% J=1.,N
IF(l=KY17,44,17
IF(K~J}18,45,18

1J = (1=-1)*N+J

KJd 3 (K~1)#*N+)

A(TJ) = ACLY) =(ACIKYI*A(K)Y)
ACL,Jd)=ACLad)=CACT,K))*(A(K, J))
CONTINUE

Y(IY = YCOI)-A(T,K)eyY (K)
YCI)Y = Y(1)«A(CIK)Y®Y(K)
CONTINUE

DO 99 I1=1,N
IFCI~K)26,99,26

IK = (I=1)*N+K

A(CIK) = =A(JK)*A(KK)
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c 26
99
101
68
c
c
e
69
70
€1001
1001

ACI,K)z=CAC],K))*(A(K,K))
CONTINUE

CONTINUE

DO 70 K=1.N

L=N+1-K

KI=1CHG(L)

IF (L~-KI) 68,70,68

DO 69 I=1,N

IL & (I-1)%N+L
TEMP = A(I,L)
TEMP = A(CI]IL)
IKI =(I-1)*N+K]

ACT,L) = ACL,KD)
ACILY = ACIKD)
ACTIKI) = TEMP
A(l,KI) = TEMP
CONTINUE

CONTINUE

DO 1001 I=1.N

DO 1001 J=1,N

IJd = (I-1)%N+J

ACL, D =ACT,d)/SV )
ALY = ACLUY/ZSVIY)
CONTINUE

RETURN

END
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SURBRROUTINE S6(0UT,SS, IN,K,KHAT,SNP)

DIMENSION K(12),KHAT(12),5(12),85(12)
SUBROUTINE FOR DETERMINING THE COMMON POLYNOMIAL COEFFICIENTS
REAL KHAT + K

REAL KHATL,)<HAT2,KHAT3,KHAT4,KHATS ,KHAT6,KHAT7,KHATS
1, KHAT9,KHAT10,KHAT11,KHAAT1L2,

1 K1,K2,K3,K4,K5,K6,X7,K8,K9,<10,K11,Mu1,My1se,MyMu,
2 L4,L3,L5,MU3, MU2,MJuU, MUVU,K12.,MU2S8Q

NP=6

KHAT1= KHAT(1)

KHAT2=KHAT(2)

KHAT3 = KHAT(3)

KHAT4 = KHAT(4)

KHATS=KHAT(5)

KHATE=KHAT(6)

KHAT7=KHAT(7)

KHAT8=KHAT(8)

KHAT9=KHAT(9)

KHAT10=KHAT(310)

KHAT11= KHAT(11)

KHAT12=zKHAT(12)

Ki= K(1)
K2z K(2)
K3 = K(3)
K4 = K(4)
KS = K(5)
K6 = K(6)
K7 = K(7)
K8=K(8)
K9 = K(9)

MUL = K9 / KHAT12

MU2 = (KB-KHAT11+MUL)/KHAT12

MU2S0=My2+My2

MUZ = (K7-KHAT10#MU1=KHAT11#My2)/KHAT12
MU1SA = MUl » Myl

MUMU = MU2/MU1SQ

MUPU = MU2SQ/MULSQ -~ MU3/MUL

Hi1 = KHATI - Kt

H10 = KHATZ2 - K2

L4 = H10 =KiwH11l
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A12 = K7«H11 + K8 + K5/MU1l =~ Kg«#MUMU = KHATS
L5 = H1i1
L3 = KHATS - K3 ~Ki«H10 + H1ils(K1w*K1 - K2)
A13 = K7#(H1i0-K1%H11) + KBwH1l + K9 + K6/MU1 ~ KHATY
A21 = K5 + K2/MJi = K3I«MUMU +K4+#MUUY/MUL -KHATS
A22 z KS5#H11 + K6 + K3/MUl - K4#«MUMU - KHAT®
A23 = KS*(H10-K1*H11)+K5+H11+K7+K4/MULl-KHAT?
A31 = K3 + 1/MJ1l - Ki*MUMU+(K2«MUUU)/MUL ~ KHAT3
A32 = K3w«H11 + K4 + K1/MUl = K2«MUMU~- KHATH4
A33 = K3 (H10-K1#Ad11) + K4wH11 + K5 + K2/MU1 - KHATS
R1 = KHAT10 =K7#{3 =~ K8 ® L4 - K9+«L5
B2 = KHATB-KB-KS5%#_ 3=-K6%*i_4-<7*5
B3I = KHATE - K6 = K3I*L3 « 44x[ 4 - K5« 5
e FROM CRAMERS RULE,..
c D1 = DELTAL1/D, D2 = DELTA2/D., D3 = DELTA3/D
A2233 = A22%xA33 - A32 « A23
A1233 = A12%#A33 = A32#%A13
A1223 = A12#A23 = A22 *#A13
N = AL1%A2233 - A21#A1233 + A31%xA1223
IF(D) 15,5,15
1002 FORMAT(1H1,46H*«*DENOMINATOR D FOR CRAMERS RULE IS ZERO EOJ
S WRITE(NP,1002)
STOP
15 CONTINUE
DELTAL = B1#A2233 = B2+A1233 + B3 #»Al1223
A2133 = A21%#A33 - A31w#A23
A1133 = A11#A33 = A31#A13
A1123 = A1L1lxA23 - A21%A13
DELTAZ = -B1+A2133 + B2 » A1133 - B3 #»41123
A2132 = A21#%#A32 = AJ1wA22
A1132 = A1l * A32 = A31w*A1D
41122 = A11%A22 - A21%A12
DELTAZ = Bl *A2132 =~ B2+*A1132 + B3 *A1122
D1 = DELTAL1/D
D2 = DELTA2/D
D3 = DELTAS/D
v THE COEFFICIENTS THEN ARE GIVEN BY ..,

SS(1)=K1~D3

§S(2) = K2-D2-D3%8S(1)

$8(3) = K3-D1-D2+*SS(1)=D3%5S(2)

SS(4)=K4 - DIwSS(1) - D2 *SS(2)eD3*SS5(3I)
SS(5) = K5 = D1#SS(2) = D2#SS(3)-D3 *SS(4)
SS(6) = K6 =-D1+#SS5(3)-D2x5S5(4)~-D3=SS5(5)
RETURN

END
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«+DECK, TEA
SURRQUTINE TEA(NO,N?,RO0TR,RI0TI,.XI,ETA)
NDIMENSION RODOTR(1),300T[(2),X1(1),ETA(1)
SUBROUTINE FOR THE 3ENEIATION FQ THE PSI AND ETA VECTORS FOR EACH
SET OF POLYNOMIAL RJOTS
Pl = 3,1415926
PITWO = PI/2,
P12 = 2,+%*P]
PIONE = 1./PI
PINV=1,/PI2
DO 15 1=1,NQ
SQRS = ROOTR(I)*RODTRCII+ROOTI(I)*ROOTI(I)
X1¢I) = ~PINV*ALOG(SQS)
IF(ROOTR(1))14,50,14
14 GCAMMA=ATANCROOTI(]I)/ROOTR(1))
ETA(C]) = GAMMA
1F({ROOTR(I}) 10,50,15
50 IF(ROOTIC(I)) 51,52,53
51 FTA(]) =-PITHWO
GQ TO 15
52 K=K
53 ETA(I) = PITHWO
GO T0 15
10 IF(ROOTICL1)) 30,40,35
40 ETA(]) = 3,1415926
G0 TO0 15
35 ETA(I) = ETA(]) + Pl
GO TO 15
30 ETA(L)Y=ETAC(C])-P]
15 FTA(1) = -PIONE*ETA(])
RETURN
END

aQQ

*END
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SUBROUTINE PAT(A»B,XsZ,X9,X12,X6,DsE»E9,E12,E6,G,MU,NF,RR9,319,
1 RR12,R112,RR6,RI6,¥D9,ND12,Y9,Y12,PIROLD,PIRNEWsPIIOLD,PIINEW,
2 S»TyNDI9,NDI12,Y19,Y]I12)
DIMENSION PIIOLD(1),PIINEAN(L), $(6,14), T(11,14),NDI9(1)
SURROUTINE FOR THE GENERATION OF THE SUMMARY TABLES FOR THE NASA FLUTTER
DIMENSION YI9(1),YI12(1)
DIMENSION PIROLDC1Y,PIRNEW(1),A(8,14),B(12,14):X9(1),%X12(1),%X6(1)
DIMENSION D(1),E9(1),E12(1),E6(1),RR9(1),RIF(L)I»RR12(1),RI112(1)
DIMENSION RRO6(1),RIS(L),Y9(1),E(1)»X(1),2(1),NDO(1),ND12(1),Y12(1)

REAL MU
GAMMA=G
ND=6
NP=é

WRITE(NP,S0)GAMMA, MU, NF, ((X(J)oDCJI),YQ(JII,YI9(JII,JU=1,9),((2(J),
1 ECI), Y120 s YI12(J)) s dst,12)
WRITE(NP,54)
no 25 J = 1,8
L = ND9(J)
WRITEC(ND,S1) ((YF () A{JdsL+1) 0 A(J,L=-2),A0JsL=1),ACJ,L),NDICJI)),
1 PIRNEW(J))
WRITE(NDSSS1)Y((YIGCUIH»SCJ,L+1)2S(Jsl=2):5¢JrL=1),SCJ,L)»NDOCJI),
1 PLINEW(J) )
25 CONTINUE
54 FORMAT(55X,24HNINTH ORDER SYSTEM /)
55 FORMAT(55X,24HTWELFTH OINER SYSTEM /)
WRITE(NP,55)
no 20 M=i,11
L=ND12(M)
JMBs M
WRITE(ND,51)Y12(JIMB),3(JM8,L+1),8B(JM8B,L-2),B(JM8,L-1),
1 B(JMB,L)Y,NDL2(M) ,21<0.D(JM8)
WRITE(ND,DS1IYI12(JYB)Y , TCUMB,LL*1), T(IME,L-2),TC(JIMB,L=1),
1T(JMB,L)SNDL12(M) ,PIIOLD(JUMB)
20 CONTINUE
WRITE(NP,S3)((XOCU),EF(UI,RRI(JIILRIG(UIINI=1:9),((X12(J)sEL2()),
1RR12(JILRE120I1) 5 U=1,12): ((XO(J),EB(JI,RROA(I),RI6(UII,JI=1,6)
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50 FORMAT(1H1,38X,55HSTASILITY JF DYNAMIC SYSTEMS WITH PERIODIZ PARAM
1METERS /
2 /749X ,40HROTOR WITH FLAP AND LEAD-LAG HINGES
3/55%X s 7HGAMMA = G12,4/55X,7H MU = G12,4/55X,7H NF = 15/

452X, 40HSINGULARITIES AND EVALUATION PQINTS /
5 30X, *H X1 ETA YR
2 YIw / 55X *N]

6NTH ORDER SYSTEM* /9(30X,4F20.8/)/55X,«TWELFTH ORDER SYSTEM»
4/12(30X,4E20,8/)/760X,18ADETEIMINANT VALUES
5/15X ,1HY,18X,7HD, =ST,14x%x,74HDELTA 1,14X,7HDELTA 2
6 14X, 7HDELTA 3,10x,5HND MAX 10H N /)

51 FORMAT(lX,'REAL*f?EZU.S. 112'F10l5)

551 FORMAT(1X,*[MAG#5E20,8,2X,110,F10.5)

53 FORMAT(w1#/55X,21HCHARACTERISTIC VALUES//55X,24HNINTH ORDER SYSTEM
2 /719X, 2AX] 219X, 3HETA,9X,18HREAL PART OF ROOT ,3X,
4 19HIMAG, PART OF RJOT /s 9(10X,4E20.87)»
3/,55X,24HTHELFTH ORDER SYSTEM
4/7/719X,2HXI,19X,3HETA9X,184REAL, PART OF ROOQT ,3X,
519HIMAG, PART OF RODT /12(10X,4E20.87),
6/55%X,24HSIXTH ORDER SYSTEM
7/7/719X,2HX1,19X,3HETA9X, 184REAL PART OF ROOT ,3X,
B19HIMAG, PART OF ROJT /6(10X,4E20,87),/71H1)
RETUFRN
END
+END
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APPENDIX C

Method for Extraction of the Common
Polynomial Factor From the Two
Higher-Degree. Polynomials

Given the two polynomials

N(z) 29 + k128 + ko277 + ... + kgz + kg

T(z)

z12 ¢ klz“ + k2210 + ... + k112 + k32

where it is known a priori that N and T both contain a sixth-degree
factor S,

S(z)

z® + 0125 4 oo2% + ... t 052 + Og,

it is required to determine o;, o2, .., 0g in terms of the coeffi-
cients kn and kn.
Note, first, that the ratio of T to N must reduce to the ratio

of a sixth-degree polynomial to a cubic, the common sextic factor
cancelling off:

T(z) _ 2% + 2125 + 22" + ... + Asz + Ag
N(z)

(C-1)
23 + w122 + pyz + pg

Now, a set of nine linear algebraic equations can be formed, the
solution of which gives the values of the A's and pu's. This set

is obtained by multiplying Eq. (C-1) through by N(z) [23 + pn;22

+ upz + p3l] and grouping the coefficients of like powers of z.
There is considerable redundancy, with a total of fourteen equa-
tions in the nine unknowns. A convenient set of nine are (with
the associated power of z from which each was obtained indicated
on the left)
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zl%; ki + uy

z13: ky + kjuy + up
z12: kg + koup + kiup + us

z5 + kjg + kguy + kgup + kyus

z” : kg * kyuy ¥ kgup + ksug

z0 kKiaus
zl kyiusg + ki
z? kygusz + kyjus + Kyou

= k; + A
i.kz + k1A + Ao
= kg + koAii+ kjdo + Ag

= kgi1 + kgrs + kyig + kghy+ ksgis

+ Kyhg

= kg + kyry + kgrp + kgiz + kyay

+ k3X5 + k2x6

= k6 + k5X1 + kHXZ + k3A3 + k2X4

+ kyig t+ 2Ag
= kglg
= ksks + k9A5

= k7A6 + keks + kgxq

If the first three and last three of these equations are properly
combined and substituted in the fourth, fifth and sixth eguations,
then a set of three equations for the coefficients u;, uy and uj

is obtained:

3
Z G..M . = B,
j=1 13 4—-7] 1

i=1,2,3 ; (C-2)
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where

a11

G112

@13

621

622

623

@3]

®32

©33

B1

B2

B3

k7[h10 - k'lhll] + thll + kg + %?— - kg

ky _ £2 ﬁ“g]z__a_i_,;
ks + g0~ ks gzt arllEy £l 5

k5h11+k6+]g—3-—k4%%2-—k6

b e B - -
k3+£1 kl + £ k3

kzhy; + ky + %% - kp %%z - ky

ok
{

Pl
ul

kS[th - k1h11] + kl+h11 + kg +
kio = k73 - kgly - kgis
];8 ~ kg - k583 - kgly - kyis

~
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while

L5 = k3 - k3 - ky(kp - ko) + (k; - k) (k12 - ky)

Zq =k2 - k2 - kl(kl - kl)

and

k
&1 = 2
ko
l ~
gp = =— (kg - ki1181)
kyo
1 ~ "
53='T—‘17‘]ﬁ0ﬁ -:LLEJ
ki | kip

Egs. (Cc-2) are readily soclved for u,, up and psz, using Cramer's

rule. The coefficients of the sextic now follow immediately, since

- N(z)
z° + u]_Z‘ + Uo2Z + ujs

S(z)
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from which

oz = Ky = up = w101

o3 = kg = w3 — upo1 - w102
oy = Ky — p30; — H203 ~ U103
o5 = K5 = uzop = w203 — M104
o = Kg = wzogz ~ up0y ~ U105
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